Learn More
Scanning X-ray microprobes are unique tools for the nanoscale investigation of specimens from the life, environmental, materials and other fields of sciences. Typically they utilize absorption and fluorescence as contrast mechanisms. Phase contrast is a complementary technique that can provide strong contrast with reduced radiation dose for weakly absorbing(More)
Exposure to mercury from dental amalgams, with possible negative health effects, has generally been considered to occur via either erosion or evaporation directly from the surface of fillings, followed by ingestion. The aim of this study was to determine the relative importance of the direct migration of mercury through the tooth as an alternative exposure(More)
The effects of duration of storage and selection of storage solution upon dentin permeability and bond strength were studied over a period of 8 days to 6 mon. Teeth were stored immediately after extraction in one of five commonly used solutions: 70% ethanol (E); 10% formalin (F); distilled water (W); distilled water with thymol (WT); or phosphate-buffered(More)
Hard X-ray fluorescence microscopy is one of the most sensitive techniques for performing trace elemental analysis of biological samples such as whole cells and tissues. Conventional sample preparation methods usually involve dehydration, which removes cellular water and may consequently cause structural collapse, or invasive processes such as embedding.(More)
Scanning X-ray microscopy focuses radiation to a small spot and probes the sample by raster scanning. It allows information to be obtained from secondary signals such as X-ray fluorescence, which yields an elemental mapping of the sample not available in full-field imaging. The analysis and interpretation from these secondary signals can be considerably(More)
We developed a technique for performing quantitative phase reconstructions from differential phase contrast images obtained using a configured detector in a scanning transmission X-ray microscope geometry. The technique uses geometric optics to describe the interaction of the X-ray beam with the specimen, which allows interpretation of the measured(More)
Phase contrast in X-ray imaging provides lower radiation dose, and dramatically higher contrast at multi-keV photon energies when compared with absorption contrast. We describe here the use of a segmented detector in a scanning transmission X-ray microscope to collect partially coherent bright field images. We have adapted a Fourier filter reconstruction(More)
A dedicated in-vacuum coherent x-ray diffraction microscope was installed at the 2-ID-B beamline of the Advanced Photon Source for use with 0.7-2.9 keV x-rays. The instrument can accommodate three common implementations of diffractive imaging; plane wave illumination; defocused-probe (Fresnel diffractive imaging) and scanning (ptychography) using either a(More)
A full-field transmission X-ray microscope (TXM) operating continuously from 5 keV to 12 keV with fluorescence mapping capability has been designed and constructed at the Beijing Synchrotron Radiation Facility, a first-generation synchrotron radiation facility operating at 2.5 GeV. Spatial resolution better than 30 nm has been demonstrated using a Siemens(More)