Benjamin Haefliger

Learn More
Synthetic gene circuits often require extensive mutual optimization of their components for successful operation, while modular and programmable design platforms are rare. A possible solution lies in the 'bow-tie' architecture, which stipulates a focal component-a 'knot'-uncoupling circuits' inputs and outputs, simplifying component swapping, and(More)
One of the goals of synthetic biology is to develop programmable artificial gene networks that can transduce multiple endogenous molecular cues to precisely control cell behavior. Realizing this vision requires interfacing natural molecular inputs with synthetic components that generate functional molecular outputs. Interfacing synthetic circuits with(More)
Development of drug discovery assays that combine high content with throughput is challenging. Information-processing gene networks can address this challenge by integrating multiple potential targets of drug candidates' activities into a small number of informative readouts, reporting simultaneously on specific and non-specific effects. Here we show a(More)
Constructing gene circuits that satisfy quantitative performance criteria has been a long-standing challenge in synthetic biology. Here, we show a strategy for optimizing a complex three-gene circuit, a novel proportional miRNA biosensor, using predictive modeling to initiate a search in the phase space of sensor genetic composition. We generate a library(More)
Supplementary Figure 1. Schematic representation and dose-response curves of different recombinase switches. a | Mechanistic illustration of the underlying recombination processes indicating the region of interest (ROI) being modified by a recombinase and the site-specific recombination sites (blue triangles). b | Detailed description of the recombinase(More)
  • 1