Benjamin F. Gherman

Learn More
Using broken-symmetry unrestricted Density Functional Theory, the mechanism of enzymatic dioxygen activation by the hydroxylase component of soluble methane monooxygenase (MMOH) is determined to atomic detail. After a thorough examination of mechanistic alternatives, an optimal pathway was identified. The diiron(II) state H(red) reacts with dioxygen to give(More)
The electronic structures of key species involved in methane hydroxylation performed by the hydroxylase component of soluble methane monooxygenase (sMMO), as proposed previously on the basis of high-level density functional theory, were investigated. The reaction starts with initial approach of methane at one of the bridging oxo atoms in intermediate Q, a(More)
The origin of the substantial difference in deacylation rates for acyl-enzyme intermediates in penicillin-binding proteins (PBPs) and beta-lactamases has remained an unsolved puzzle whose solution is of great importance to understanding bacterial antibiotic resistance. In this work, accurate, large-scale mixed ab initio quantum mechanical/molecular(More)
The activation of dioxygen by dopamine beta-monooxygenase (DbetaM) and peptidylglycine alpha-hydroxylating monooxygenase (PHM) is postulated to occur at a copper site ligated by two histidine imidazoles and a methionine thioether, which is unusual because such thioether ligation is not present in other O2-activating copper proteins. To assess the possible(More)
Using broken-symmetry unrestricted density functional theory quantum mechanical (QM) methods in concert with mixed quantum mechanics/molecular mechanics (QM/MM) methods, the hydroxylation of methane and substituted methanes by intermediate Q in methane monooxygenase hydroxylase (MMOH) has been quantitatively modeled. This protocol allows the protein(More)
The finding that dioxygen binds end-on to the Cu(B) site in the crystal structure of a precatalytic complex of peptidylglycine alpha-hydroxylating monooxygenase has spurred the search for biomimetic model complexes exhibiting the same dioxygen coordination. Recent work has not only indicated that sterically hindered beta-diketiminate ligands (L(1)) could(More)
The character of singlet (C(3)N(2)H(5))CuO(2) ranges smoothly between copper(III) peroxide and copper(II) superoxide with variation of the electronic character of the supporting beta-diketiminate ligand. Over the range of the variation, multireference second-order perturbation theory predicts the (1)A(1) singlet state always to be lower in energy than the(More)
Copper-oxygen complexes supported by beta-diketiminate and anilido-imine ligands have recently been reported (Aboelella et al., J Am Chem Soc 2004, 126, 16896; Reynolds et al., Inorg Chem 2005, 44, 6989) as potential biomimetic models for dopamine beta-monooxygenase (DbetaM) and peptidylglycine alpha-hydroxylating monooxygenase (PHM). However, in contrast(More)
Semiclassical molecular dynamics simulations have been combined with quantum chemistry calculations to provide detailed modeling of the methane and ethane hydroxylation reactions catalyzed by the hydroxylase enzymes of the soluble methane monooxygenase system. The experimental distribution of enantiomeric alcohols in the reaction of ethanes made chiral by(More)
The catalytic pathways of soluble methane monooxygenase (sMMO) and cytochrome P450CAM, iron-containing enzymes, are described and compared. Recent extensive density functional ab initio electronic structure calculations have revealed many similarities in a number of the key catalytic steps, as well as some important differences. A particularly interesting(More)