Learn More
Long-term dietary intake influences the structure and activity of the trillions of microorganisms residing in the human gut, but it remains unclear how rapidly and reproducibly the human gut microbiome responds to short-term macronutrient change. Here we show that the short-term consumption of diets composed entirely of animal or plant products alters(More)
The impact of exotic species on native organisms is widely acknowledged, but poorly understood. Very few studies have empirically investigated how invading plants may alter delicate ecological interactions among resident species in the invaded range. We present novel evidence that antifungal phytochemistry of the invasive plant, Alliaria petiolata, a(More)
Plants have often been moved across the globe with intact root systems. These roots are likely to have housed symbiotic ectomycorrhizal (EM) fungi and the movement of plants may have facilitated the introduction of EM fungi.Here, we report data compiled from a newly created database of EM fungal introductions.We estimate the magnitude of EM fungal(More)
Microbial symbioses have evolved repeatedly across the tree of life, but the genetic changes underlying transitions to symbiosis are largely unknown, especially for eukaryotic microbial symbionts. We used the genus Amanita, an iconic group of mushroom-forming fungi engaged in ectomycorrhizal symbioses with plants, to identify both the origins and potential(More)
Attempts to understand the ecological effect of increasing atmospheric CO2 concentration, [CO2], usually involve exposing today's ecosystems to expected future [CO2] levels. However, a major assumption of these approaches has not been tested--that exposing ecosystems to a single-step increase in [CO2] will yield similar responses to those of a gradual(More)
Transposable elements (TEs) are ubiquitous inhabitants of eukaryotic genomes and their proliferation and dispersal shape genome architectures and diversity. Nevertheless, TE dynamics are often explored for one species at a time and are rarely considered in ecological contexts. Recent work with plant pathogens suggests a link between symbiosis and TE(More)
Tractable microbial communities are needed to bridge the gap between observations of patterns of microbial diversity and mechanisms that can explain these patterns. We developed cheese rinds as model microbial communities by characterizing in situ patterns of diversity and by developing an in vitro system for community reconstruction. Sequencing of 137(More)
Microbial communities of fermented foods have provided humans with tools for preservation and flavor development for thousands of years. These simple, reproducible, accessible, culturable, and easy-to-manipulate systems also provide opportunities for dissecting the mechanisms of microbial community formation. Fermented foods can be valuable models for(More)
The inability to associate with local species may constrain the spread of mutualists arriving to new habitats, but the fates of introduced, microbial mutualists are largely unknown. The deadly poisonous ectomycorrhizal fungus Amanita phalloides (the death cap) is native to Europe and introduced to the East and West Coasts of North America. By cataloging(More)
Many metagenomic sequencing studies have observed the presence of closely related bacterial species or genotypes in the same microbiome. Previous attempts to explain these patterns of microdiversity have focused on the abiotic environment, but few have considered how biotic interactions could drive patterns of microbiome diversity. We dissected the(More)