Benjamin D. Rood

Learn More
Serotonergic (5HT) neurons modulate diverse behaviors and physiology and are implicated in distinct clinical disorders. Corresponding diversity in 5HT neuronal phenotypes is becoming apparent and is likely rooted in molecular differences, yet a comprehensive approach characterizing molecular variation across the 5HT system is lacking, as is concomitant(More)
Trauma during early life is a major risk factor for the development of anxiety disorders and suggests that the developing brain may be particularly sensitive to perturbation. Increased vulnerability most likely involves altering neural circuits involved in emotional regulation. The role of serotonin in emotional regulation is well established, but little is(More)
We previously found a large sex difference in the parental responsiveness of adult virgin prairie voles (Microtus ochrogaster) such that most males are spontaneously parental, whereas most females are not. Because this sex difference is independent of the gonadal hormones normally circulating in adult virgin voles, the present study examined whether(More)
Defining how arginine vasopressin (AVP) acts centrally to regulate homeostasis and behavior is problematic, as AVP is made in multiple nuclei in the hypothalamus (i.e., paraventricular [PVN], supraoptic [SON], and suprachiasmatic [SCN]) and extended amygdala (i.e., bed nucleus of the stria terminalis [BNST] and medial amygdala [MeA]), and these groups of(More)
Perinatal estrogens increase the number of vasopressin-expressing cells and the density of vasopressin-immunoreactive fibers observed in adult male rodents. The mechanism of action of estrogens on sexual differentiation of the extra-hypothalamic vasopressin system is unknown. We hypothesized that the sexually dimorphic expression of progestin receptors(More)
The sexually dimorphic extrahypothalamic arginine-vasopressin (AVP) projections from the bed nucleus of the stria terminalis to the lateral septum (LS) and lateral habenula (LHb) are denser in males than females and, in rats, require males' perinatal exposure to gonadal hormones but the absence of such exposure in females. We examined perinatal hormone(More)
UNLABELLED Newborn neurons enter an extended maturation stage, during which they acquire excitability characteristics crucial for development of presynaptic and postsynaptic connectivity. In contrast to earlier specification programs, little is known about the regulatory mechanisms that control neuronal maturation. The Pet-1 ETS (E26(More)
The neuropeptide vasopressin (AVP) has been implicated in the regulation of numerous physiological and behavioral processes. Although mice have become an important model for studying this regulation, there is no comprehensive description of AVP distribution in the mouse brain and spinal cord. With C57BL/6 mice, we used immunohistochemistry to corroborate(More)
The neuropeptide vasopressin (AVP; arginine-vasopressin) is produced in a handful of brain nuclei located in the hypothalamus and extended amygdala and is released both peripherally as a hormone and within the central nervous system as a neurotransmitter. Central projections have been associated with a number of functions including regulation of(More)
Escalated aggression can have devastating societal consequences, yet underlying neurobiological mechanisms are poorly understood. Here, we show significantly increased inter-male mouse aggression when neurotransmission is constitutively blocked from either of two subsets of serotonergic, Pet1+ neurons: one identified by dopamine receptor(More)