Benjamin D. Hatton

Learn More
Creating a robust synthetic surface that repels various liquids would have broad technological implications for areas ranging from biomedical devices and fuel transport to architecture but has proved extremely challenging. Inspirations from natural nonwetting structures, particularly the leaves of the lotus, have led to the development of liquid-repellent(More)
Much of modern technology--from data encryption to environmental sensors to templates for device fabrication--relies on encoding complex chemical information in a single material platform. Here we develop a technique for patterning multiple chemical functionalities throughout the inner surfaces of three-dimensional (3D) porous structures. Using a highly(More)
The prevention and control of ice accumulation has important applications in aviation, building construction, and energy conversion devices. One area of active research concerns the use of superhydrophobic surfaces for preventing ice formation. The present work develops a physics-based modeling framework to predict ice formation on cooled superhydrophobic(More)
We present a reproducible, one-pot colloidal co-assembly approach that results in large-scale, highly ordered porous silica films with embedded, uniformly distributed, accessible gold nanoparticles. The unique coloration of these inverse opal films combines iridescence with plasmonic effects. The coupled optical properties are easily tunable either by(More)
Materials that control ice accumulation are important to aircraft efficiency, highway and powerline maintenance, and building construction. Most current deicing systems include either physical or chemical removal of ice, both energy and resource-intensive. A more desirable approach would be to prevent ice formation rather than to fight its build-up. Much(More)
Thrombosis and biofouling of extracorporeal circuits and indwelling medical devices cause significant morbidity and mortality worldwide. We apply a bioinspired, omniphobic coating to tubing and catheters and show that it completely repels blood and suppresses biofilm formation. The coating is a covalently tethered, flexible molecular layer of(More)
Whereas considerable interest exists in self-assembly of well-ordered, porous "inverse opal" structures for optical, electronic, and (bio)chemical applications, uncontrolled defect formation has limited the scale-up and practicality of such approaches. Here we demonstrate a new method for assembling highly ordered, crack-free inverse opal films over a(More)
There is a dire need for infection prevention strategies that do not require the use of antibiotics, which exacerbate the rise of multiand pan-drug resistant infectious organisms. An important target in this area is the bacterial attachment and subsequent biofilm formation on medical devices (e.g., catheters). Here we describe nonfouling, lubricant-infused(More)
A transparent coating that repels a wide variety of liquids, prevents staining, is capable of self-repair and is robust towards mechanical damage can have a broad technological impact, from solar cell coatings to self-cleaning optical devices. Here we employ colloidal templating to design transparent, nanoporous surface structures. A lubricant can be firmly(More)
Nanobiomaterials are introducing new capabilities to coordinate cell selection, growth, morphology, and differentiation. Herein, we report that tuning the geometry of ordered arrays of nanopillars (NP) elicits specialized morphologies in adherent cells. Systematic analysis of the effects of the NP radius, height, and spacing reveals that stem cells assume(More)