Benjamin Bolduc

Learn More
Screening of the commercially available Ph.D.-7 phage-displayed heptapeptide library for peptides that bind immobilized Zn2+ resulted in the repeated selection of the peptide HAIYPRH, although binding assays indicated that HAIYPRH is not a zinc-binding peptide. HAIYPRH has also been selected in several other laboratories using completely different targets,(More)
There are no known RNA viruses that infect Archaea. Filling this gap in our knowledge of viruses will enhance our understanding of the relationships between RNA viruses from the three domains of cellular life and, in particular, could shed light on the origin of the enormous diversity of RNA viruses infecting eukaryotes. We describe here the identification(More)
The role of bacteriophages in influencing the structure and function of the healthy human gut microbiome is unknown. With few exceptions, previous studies have found a high level of heterogeneity in bacteriophages from healthy individuals. To better estimate and identify the shared phageome of humans, we analyzed a deep DNA sequence dataset of active(More)
Hot springs are natural habitats for thermophilic Archaea and Bacteria. In this paper, we present the metagenomic analysis of eight globally distributed terrestrial hot springs from China, Iceland, Italy, Russia, and the USA with a temperature range between 61 and 92 ∘C and pH between 1.8 and 7. A comparison of the biodiversity and community composition(More)
The first archaeal virus was isolated over 40 years ago prior to the recognition of the three domain structure of life. In the ensuing years, our knowledge of Archaea and their viruses has increased, but they still remain the most mysterious of life's three domains. Currently, over 100 archaeal viruses have been discovered, but few have been described in(More)
Understanding of viral assemblage structure in natural environments remains a daunting task. Total viral assemblage sequencing (for example, viral metagenomics) provides a tractable approach. However, even with the availability of next-generation sequencing technology it is usually only possible to obtain a fragmented view of viral assemblages in natural(More)
Microbes affect nutrient and energy transformations throughout the world's ecosystems, yet they do so under viral constraints. In complex communities, viral metagenome (virome) sequencing is transforming our ability to quantify viral diversity and impacts. Although some bottlenecks, for example, few reference genomes and nonquantitative viromics, have been(More)
The Archaea-and their viruses-remain the most enigmatic of life's three domains. Once thought to inhabit only extreme environments, archaea are now known to inhabit diverse environments. Even though the first archaeal virus was described over 40 years ago, only 117 archaeal viruses have been discovered to date. Despite this small number, these viruses have(More)
A new type of viral-induced lysis system has recently been discovered for two unrelated archaeal viruses, STIV and SIRV2. Prior to the lysis of the infected host cell, unique pyramid-like lysis structures are formed on the cell surface by the protrusion of the underlying cell membrane through the overlying external S-layer. It is through these pyramid(More)
Taxonomic classification of archaeal and bacterial viruses is challenging, yet also fundamental for developing a predictive understanding of microbial ecosystems. Recent identification of hundreds of thousands of new viral genomes and genome fragments, whose hosts remain unknown, requires a paradigm shift away from traditional classification approaches and(More)