Benjamin Barbour

Learn More
1. Whole-cell recordings were obtained from Bergmann glial cells in rat cerebellar slices. 2. The cells had low input resistances (70 +/- 38 M omega; n = 13) and a mean resting potential of -82 +/- 6 mV (n = 12) with a potassium-based internal solution. Electrical and dye coupling between Bergmann glia were confirmed. 3. Stimulation of parallel fibres(More)
Glutamate uptake into nerve and glial cells usually functions to keep the extracellular glutamate concentration low in the central nervous system. But one component of glutamate release from neurons is calcium-independent, suggesting a non-vesicular release that may be due to a reversal of glutamate uptake. The activity of the electrogenic glutamate uptake(More)
The effects of excitatory amino acids on the membrane current of isolated retinal glial cells (Müller cells) were investigated using whole-cell patch clamping. 2. L-Glutamate evoked an inward current at membrane potentials between -140 and +50 mV. The current was larger at more negative potentials. 3. The glutamate-evoked current was activated by external(More)
Immunological synapse formation is usually assumed to require antigen recognition by T cell receptors. However, the immunological synapse formed at the interface between naïve T cells and dendritic cells (DCs) has never been described. We show here that in the absence of antigen, and even of major histocompatibility complex molecules, T cell-DC synapses are(More)
Uptake of glutamate into glial cells in the CNS maintains the extracellular glutamate concentration below neurotoxic levels and helps terminate its action as a neurotransmitter. The co-transport of two sodium ions on the glutamate carrier is thought to provide the energy needed to transport glutamate into cells. We have shown recently that glutamate uptake(More)
Activation of NMDA (N-methyl-D-aspartate) receptors by neurotransmitter glutamate stimulates phospholipase A2 to release arachidonic acid. This second messenger facilitates long-term potentiation of glutamatergic synapses in the hippocampus, possibly by blocking glutamate uptake. We have studied the effect of arachidonic acid on glutamate uptake into glial(More)
1. Glutamate uptake into isolated, whole-cell patch-clamped glial cells was studied by monitoring the increase of cell fluorescence generated as glutamate and NAD(P) were converted into alpha-ketoglutarate and NAD(P)H by glutamate dehydrogenase. The current generated by the glutamate uptake carrier was recorded simultaneously. 2. L-Glutamate evoked an(More)
Schwartz and Tachibana have claimed that the uptake of excitatory amino acids (EAAs) into glia is independent of intracellular potassium, in contradiction to the results of our previous studies. We show here that failure to observe the potassium-dependence of uptake resulted from the use of small whole-cell pipettes, which fail to dialyze properly the cell(More)