Learn More
Although activated spinal cord glia contribute importantly to neuropathic pain, how nerve injury activates glia remains controversial. It has recently been proposed, on the basis of genetic approaches, that toll-like receptor 4 (TLR4) may be a key receptor for initiating microglial activation following L5 spinal nerve injury. The present studies extend this(More)
Spinal proinflammatory cytokines are powerful pain-enhancing signals that contribute to pain following peripheral nerve injury (neuropathic pain). Recently, one proinflammatory cytokine, interleukin-1, was also implicated in the loss of analgesia upon repeated morphine exposure (tolerance). In contrast to prior literature, we demonstrate that the action of(More)
Morphine-induced glial proinflammatory responses have been documented to contribute to tolerance to opioid analgesia. Here, we examined whether drugs previously shown to suppress glial proinflammatory responses can alter other clinically relevant opioid effects; namely, withdrawal or acute analgesia. AV411 (ibudilast) and minocycline, drugs with distinct(More)
Opioid-induced proinflammatory glial activation modulates wide-ranging aspects of opioid pharmacology including: opposition of acute and chronic opioid analgesia, opioid analgesic tolerance, opioid-induced hyperalgesia, development of opioid dependence, opioid reward, and opioid respiratory depression. However, the mechanism(s) contributing to(More)
Opioid-induced glial activation and its proinflammatory consequences have been associated with both reduced acute opioid analgesia and the enhanced development of tolerance, hyperalgesia and allodynia following chronic opioid administration. Intriguingly, recent evidence demonstrates that these effects can result independently from the activation of(More)
Previous studies of peripheral immune cells have documented that activation of adenosine 2A receptors (A(2A)Rs) decrease proinflammatory cytokine release and increase release of the potent anti-inflammatory cytokine, interleukin-10 (IL-10). Given the growing literature supporting that glial proinflammatory cytokines importantly contribute to neuropathic(More)
We recently described a non-viral gene therapy paradigm offering long-term resolution of established neuropathic pain in several animal models. Here, the requirements for long-term therapeutic effects are described, and evidence is provided for a mechanism of action based on immunological priming of the intrathecal (i.t.) space. Long-term pain reversal was(More)
  • 1