Learn More
In this study, the individually determined upper alpha frequency band in EEG (electroencephalogram) was investigated as a neurofeedback parameter. Fourteen subjects were trained on five sessions within 1 week by means of feedback dependent on the current upper alpha amplitude. On the first and fifth session, cognitive ability was tested by a mental rotation(More)
Does our perceptual awareness consist of a continuous stream, or a discrete sequence of perceptual cycles, possibly associated with the rhythmic structure of brain activity? This has been a long-standing question in neuroscience. We review recent psychophysical and electrophysiological studies indicating that part of our visual awareness proceeds in(More)
Low-frequency oscillations in the electroencephalogram (EEG) are thought to reflect periodic excitability changes of large neural networks. Consistent with this notion, detection probability of near-threshold somatosensory, visual, and auditory targets has been reported to co-vary with the phase of oscillations in the EEG. In audition, entrainment of(More)
Detection thresholds for pairs or multiple copies of sounds are better than those for a single sound, an observation commonly interpreted as indicating temporal integration by the auditory system. Detection thresholds for pairs of brief tones depend on the delay between the tones (if short) and on frequency, suggesting frequency-dependent temporal overlap(More)
Perceptual phase entrainment improves speech intelligibility by phase-locking the brain's high-excitability and low-excitability phases to relevant or irrelevant events in the speech input. However, it remains unclear whether phase entrainment to speech can be explained by a passive "following" of rhythmic changes in sound amplitude and spectral content or(More)
Phase entrainment of neural oscillations, the brain's adjustment to rhythmic stimulation, is a central component in recent theories of speech comprehension: the alignment between brain oscillations and speech sound improves speech intelligibility. However, phase entrainment to everyday speech sound could also be explained by oscillations passively following(More)
Constantly bombarded with input, the brain has the need to filter out relevant information while ignoring the irrelevant rest. A powerful tool may be represented by neural oscillations which entrain their high-excitability phase to important input while their low-excitability phase attenuates irrelevant information. Indeed, the alignment between brain(More)
Evidence for rhythmic or 'discrete' sensory processing is abundant for the visual system, but sparse and inconsistent for the auditory system. Fundamental differences in the nature of visual and auditory inputs might account for this discrepancy: whereas the visual system mainly relies on spatial information, time might be the most important factor for the(More)
  • 1