Benedikt Baeuerle

Learn More
Nyquist sinc-pulse shaping provides spectral efficiencies close to the theoretical limit. In this paper we discuss the analogy to optical orthogonal frequency division multiplexing and compare both techniques with respect to spectral efficiency and peak to average power ratio. We then show that using appropriate algorithms, Nyquist pulse shaped modulation(More)
Plasmonic modulators might pave the way for a new generation of compact low-power high-speed optoelectronic devices. We introduce an extremely compact transmitter based on plasmonic Mach-Zehnder modulators offering a capacity of 4 × 36 Gbit/s on a footprint that is only limited by the size of the high-speed contact pads. The transmitter array is contacted(More)
We report on high-extinction-ratio, ultrafast plasmonic Mach-Zehnder modulators. We demonstrate data modulation at line rates up to 72 Gbit/s (BPSK) and 108 Gbit/s (4-ASK). The driving voltages are U<sub>d</sub> = 4 and 2.5 V<sub>p</sub> for 12.5 and 25 &#x03BC;m short devices, respectively. The frequency response shows no bandwidth limitations up to 70(More)
We demonstrate for the first time transmission of 54 Gbit/s and 48 Gbit/s over 44 km and 150 km, respectively, utilizing an optical bandwidth of only 3 GHz. We used polarization division multiplexed 512QAM and 256QAM modulation formats in combination with Nyquist pulse shaping having virtually zero roll-off. The resulting spectral efficiencies range up to(More)
Flexible optical networking is identified today as the solution that offers smooth system upgradability towards Tb/s capacities and optimized use of network resources. However, in order to fully exploit the potentials of flexible spectrum allocation and networking, the development of a flexible switching node is required capable to adaptively add, drop and(More)
In this paper, we demonstrate ultra-fast millimeter wave beam steering with settling times below 50 ps. A phased array antenna with two elements is employed to realize beam steering. The phased array feeder is implemented with a recently introduced time delay line that provides, at the same time, an ultra-fast tunability, broadband operation, and continuous(More)
A high-extinction-ratio plasmonic Mach-Zehnder modulator with an electrical bandwidth exceeding 70GHz is demonstrated. The BER is below 4&#x00D7;10<sup>-5</sup> and 2&#x00D7;10<sup>-2</sup> for a BPSK and 4-ASK signal with line rates of 72Gbit/s and 108Gbit/s, respectively.
| Complementing plasmonic slot waveguides with highly nonlinear organic materials has rendered a new generation of ultracompact active nanophotonic components that are redefining the state of the art. In this paper, we review the fundamentals of this so-called plasmonic–organic–hybrid (POH) platform. Starting from simple phase shifters to the most compact(More)