Learn More
One symbolic (rule-based inductive learning) and one connectionist (neural network) machine learning technique were used to reconstruct muscle activation patterns from kinematic data measured during normal human walking at several speeds. The activation patterns (or desired outputs) consisted of surface electromyographic (EMG) signals from the(More)
Many biomechanical and medical analyses rely on the availability of reliable body segment parameter estimates. Current techniques typically take many manual measurements of the human body, in conjunction with geometric models or regression equations. However, such techniques are often criticised. 3D scanning offers many advantages, but current systems are(More)
This paper presents a new approach to gait analysis and parameter estimation from a single miniaturized ear-worn sensor embedded with a triaxial accelerometer. Singular spectrum analysis combined with the longest common subsequence algorithm has been used as a basis for gait parameter estimation. It incorporates information from all axes of the(More)
Discomfort experienced during surface functional electrical stimulation (FES) is thought to be partly a result of localized high current density in the skin underneath the stimulating electrode. This article describes a finite element (FE) model to predict skin current density distribution in the region of the electrode during stimulation and its(More)
The aim of this study was to compare the seven following commercially available activity monitors in terms of step count detection accuracy: Movemonitor (Mc Roberts), Up (Jawbone), One (Fitbit), ActivPAL (PAL Technologies Ltd.), Nike+ Fuelband (Nike Inc.), Tractivity (Kineteks Corp.) and Sensewear Armband Mini (Bodymedia). Sixteen healthy adults consented(More)
  • 1