Learn More
Animals and fungi assemble a contractile ring of actin filaments and the motor protein myosin to separate into individual daughter cells during cytokinesis. We used fluorescence microscopy of live fission yeast cells to observe that membrane-bound nodes containing myosin were broadly distributed around the cell equator and assembled into a contractile ring(More)
Polymerization of actin proteins into dynamic structures is essential to eukaryotic cell life, motivating many in vitro experiments measuring polymerization kinetics of individual filaments. Here, we model these kinetics, accounting for all relevant steps revealed by experiment: polymerization, depolymerization, random ATP hydrolysis, and release of(More)
Formin FH2 domains associate processively with actin-filament barbed ends and modify their rate of growth. We modeled how the elongation rate depends on the concentrations of profilin and actin for four different formins. We assume that (1) FH2 domains are in rapid equilibrium among conformations that block or allow actin addition and that (2)(More)
Almost all known intracellular fusion reactions are driven by formation of trans-SNARE complexes through pairing of vesicle-associated v-SNAREs with complementary t-SNAREs on target membranes. However, the number of SNARE complexes required for fusion is unknown, and there is controversy about whether additional proteins are required to explain the fast(More)
Cells assemble a variety of bundled actomyosin structures in the cytoskeleton for activities such as cell-shape regulation, force production, and cytokinesis. Although these linear structures exhibit varied architecture, two common organizational themes are a punctate distribution of myosin II and distinct patterns of actin polarity. The mechanisms that(More)
Cytoskeletal actin assemblies transmit mechanical stresses that molecular sensors transduce into biochemical signals to trigger cytoskeletal remodeling and other downstream events. How mechanical and biochemical signaling cooperate to orchestrate complex remodeling tasks has not been elucidated. Here, we studied remodeling of contractile actomyosin stress(More)
Physisorption or chemisorption from dilute polymer solutions often entails irreversible polymer-surface bonding. We present a theory of the resultant nonequilibrium layers. While the density profile and loop distribution are the same as for equilibrium layers, the final layer comprises a tightly bound inner part plus an outer part whose chains make only fN(More)
We study irreversible polymer adsorption from dilute solutions theoretically. Universal features of the resultant non-equilibrium layers are predicted. Two broad cases are considered, distinguished by the magnitude of the local monomer-surface sticking rate Q: chemisorption (very small Q) and physisorption (large Q). Early stages of layer formation entail(More)
Designable media can control properties of nanocomposite materials by spatially organizing nanoparticles. Here we theoretically study particle organization by ultrathin polymer films of grafted chains ("brushes"). Polymer-soluble nanoparticles smaller than a brush-determined threshold disperse in the film to a depth scaling inversely with particle volume.(More)