Ben Harland

Learn More
Markovian models based on the stochastic master equation are often encountered in single molecule dynamics, reaction networks, and nonequilibrium problems in chemistry, physics, and biology. An efficient and convenient method to simulate these systems is the kinetic Monte Carlo algorithm which generates continuous-time stochastic trajectories. We discuss an(More)
The electrical properties of the cellular membrane are important for ion transport across cells and electrophysiology. Plasma membranes also resist bending and stretching, and mechanical properties of the membrane influence cell shape and forces in membrane tethers pulled from cells. There exists a coupling between the electrical and mechanical properties(More)
Four volatilization models were tested against field data from the Manchester Ship Canal and the River Main. The equations byMACKAY andYEUN, using Schmidt number and wind speed for the calculation of volatilization rate, were found to give the best results for the slowly flowing Ship Canal. Models using flow velocity grossly underestimated the real values(More)
Outer hair cell electromechanics, critically important to mammalian active hearing, is driven by the cell membrane potential. The membrane protein prestin is a crucial component of the active outer hair cell’s motor. The focus of the paper is the analysis of the local membrane potential and electric field resulting from the interaction of electric charges(More)
Lakes with high levels of dissolved organic matter are common in northern temperate regions. These habitats are sensitive to environmental and climate change, but the molecular ecology and eco-physiology of their phytoplankton have been under studied, in part because the DOM interferes with molecular and biochemical analyses of these populations. We(More)
  • 1