Learn More
Pine wilt disease (PWD) caused by the pine wood nematode (PWN), Bursaphelenchus xylophilus, is one of the most devastating diseases of Pinus spp. The PWN was therefore listed as one of the most dangerous forest pests in China meriting quarantine. Virulence of the PWN is closely linked with the spread of PWD. However, main factors responsible for the(More)
Plant root exudates have been shown to play an important role in mediating interactions between plant growth-promoting rhizobacteria (PGPR) and their host plants. Most investigations were performed on Gram-negative rhizobacteria, while much less is known about Gram-positive rhizobacteria. To elucidate early responses of PGPR to root exudates, we(More)
Plants have developed a wide-range of adaptations to overcome nutrient limitation, including changes to the quantity and composition of carbon-containing compounds released by roots. Root-associated bacteria are largely influenced by these compounds which can be perceived as signals or substrates. Here, we evaluate the effect of root exudates collected from(More)
The colonization of three types of different plants, Zea mays, Arabidopsis thaliana, and Lemna minor, by GFP-labeled Gram-positive rhizobacterium Bacillus amyloliquefaciens FZB42 was studied in gnotobiotic systems using confocal laser scanning microscopy and electron microscopy. It was demonstrated that FZB42 was able to colonize all the plants. On one(More)
Colonization studies previously performed with a green-fluorescent-protein, GFP, labeled derivative of Bacillus amyloliquefaciens FZB42 revealed that the bacterium behaved different in colonizing surfaces of plant roots of different species (Fan et al., 2012). In order to extend these studies and to elucidate which genes are crucial for root colonization,(More)
Bacillus amyloliquefaciens ssp. plantarum FZB42 represents the prototype of Gram-positive plant growth promoting and biocontrol bacteria. In this study, we applied transposon mutagenesis to generate a transposon library, which was screened for genes involved in multicellular behavior and biofilm formation on roots as a prerequisite of plant growth promoting(More)
Bacillus amyloliquefaciens subsp. plantarum FZB42 is a representative of Gram-positive plant-growth-promoting rhizobacteria (PGPR) that inhabit plant root environments. In order to better understand the molecular mechanisms of bacteria-plant symbiosis, we have systematically analyzed the primary transcriptome of strain FZB42 grown under(More)
The data presented in this article are related to the publication entitled "Malonylome analysis of rhizobacterium Bacillus amyloliquefaciens FZB42 reveals involvement of lysine malonylation in polyketide synthesis and plant-bacteria interactions"(doi:10.1016/j.jprot.2016.11.022) (B. Fan, Y. Li, L. Li et al.) [1]. This article presented the raw information(More)
The plant growth promoting model bacterium FZB42T was proposed as the type strain of Bacillus amyloliquefaciens subsp. plantarum (Borriss et al., 2011), but has been recently recognized as being synonymous to Bacillus velezensis due to phylogenomic analysis (Dunlap C. et al., 2016). However, until now, majority of publications consider plant-associated(More)
The alternative sigma factor D is known to be involved in at least three biological processes in Bacilli: flagellin synthesis, methyl-accepting chemotaxis and autolysin synthesis. Although many Bacillus genes have been identified as SigD regulon, the list may be not be complete. With microarray-based systemic screening, we found a set of genes downregulated(More)
  • 1