Learn More
The heterogeneity in composition and interaction within the cellular membrane translates into a wide range of diffusion coefficients of its constituents. Therefore, several complementary microfluorimetric techniques such as fluorescence correlation spectroscopy (FCS), fluorescence recovery after photobleaching (FRAP) and single-particle tracking (SPT) have(More)
Over a period of 227 days properties of activated sludge grown in an sequencing batch reactor (SBR) operated under stable conditions were analyzed. Settling properties (sludge volume index (SVI)) of the activated sludge were compared with on-line measurements of floc size and size distribution obtained by using a laser light scattering technique (Malvern(More)
Many membrane proteins and lipids are partially confined in substructures ranging from tens of nanometers to micrometers in size. Evidence for heterogeneities in the membrane of oligodendrocytes, i.e. the myelin-producing cells of the central nervous system, is almost exclusively based on detergent methods. However, as application of detergents can alter(More)
Single particle tracking (SPT) of transmembrane receptors in the plasma membrane often reveals heterogeneous diffusion. A thorough interpretation of the displacements requires an extensive analysis suited for discrimination of different motion types present in the data. Here the diffusion pattern of the homomeric alpha3-containing glycine receptor (GlyR) is(More)
Fluorescence recovery after photobleaching (FRAP) is a common technique to probe mobility of fluorescently labeled proteins in biological membranes by monitoring the time-dependence of the spatially integrated fluorescence signals after a bleaching pulse. Discrimination by FRAP between free diffusion with an immobile fraction (FDIM) and the phenomenological(More)
  • 1