Ben B. B. Booth

Learn More
Systematic climate shifts have been linked to multidecadal variability in observed sea surface temperatures in the North Atlantic Ocean. These links are extensive, influencing a range of climate processes such as hurricane activity and African Sahel and Amazonian droughts. The variability is distinct from historical global-mean temperature changes and is(More)
A methodology is described for probabilistic predictions of future climate. This is based on a set of ensemble simulations of equilibrium and time-dependent changes, carried out by perturbing poorly constrained parameters controlling key physical and biogeochemical processes in the HadCM3 coupled ocean-atmosphere global climate model. These (ongoing)(More)
The release of carbon from tropical forests may exacerbate future climate change, but the magnitude of the effect in climate models remains uncertain. Coupled climate-carbon-cycle models generally agree that carbon storage on land will increase as a result of the simultaneous enhancement of plant photosynthesis and water use efficiency under higher(More)
Simulations with the Hadley Centre general circulation model (HadCM3), including carbon cycle model and forced by a 'business-as-usual' emissions scenario, predict a rapid loss of Amazonian rainforest from the middle of this century onwards. The robustness of this projection to both uncertainty in physical climate drivers and the formulation of the land(More)
A method for estimating uncertainty in future climate change is discussed in detail and applied to predictions of global mean temperature change. The method uses optimal fingerprinting to make estimates of uncertainty in model simulations of twentieth-century warming. These estimates are then projected forward in time using a linear, compact relationship(More)
We compare future changes in global mean temperature in response to different future scenarios which, for the first time, arise from emission-driven rather than concentration-driven perturbed parameter ensemble of a global climate model (GCM). These new GCM simulations sample uncertainties in atmospheric feedbacks, land carbon cycle, ocean physics and(More)
There is a large diversity in simulated aerosol forcing among models that participated in the fifth Coupled Model Intercomparison Project, particularly related to aerosol interactions with clouds. Here we use the reported model data and fitted aerosol-cloud relations to separate the main sources of inter-model diversity in the magnitude of the cloud albedo(More)
One con fate of t *Autho Centre for Ecology and Hydrology, Benson Lane, Wallingford, Oxon OX10 8BB, UK Department of Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield S10 2TN, UK Met Office Hadley Centre, FitzRoy Road, Exeter, Devon EX1 3PB, UK Met Office Hadley Centre, JCHMR, Benson Lane, Wallingford, Oxon OX10 8BB, UK School of(More)
For adaptation and mitigation planning, stakeholders need reliable information about regional precipitation changes under different emissions scenarios and for different time periods. A significant amount of current planning effort assumes that each K of global warming produces roughly the same regional climate change. Here using 25 climate models, we(More)