Ben Avi Weissman

Learn More
Exposure to soman, a toxic organophosphate nerve agent, causes severe adverse effects and long term changes in the peripheral and central nervous systems. The goal of this study was to evaluate the ability of prophylactic treatments to block the deleterious effects associated with soman poisoning. scopolamine, a classical anticholinergic agent, or(More)
Sarin, a potent cholinesterase inhibitor, induces an array of toxic effects including convulsions and behavioral impairments. We report here on the protection provided by post-exposure antidotal treatments against a lethal dose of sarin (1.2xLD50) by scopolamine, benactyzine, trihexyphenidyl or caramiphen, administered 5, 10 or 20 min after the initiation(More)
Buspirone, a clinically effective anxiolytic, has not shown robust effects consistently in procedures used traditionally with rodents and nonhuman primates to evaluate potential antianxiety activity. When key pecking by pigeons was maintained by food and was punished alternately under one component of a multiple schedule by the presentation of electric(More)
Organophosphate poisoning is associated with adverse effects on the central nervous system such as seizure/convulsive activity and long term changes in neuronal networks. This study reports on investigations designed to assess the consequences of soman exposure on excitatory amino acids receptors in the rat brain. In addition, the protective effects of(More)
Potent cholinesterase inhibitors (e.g., soman, sarin), induce a wide range of deleterious effects including convulsions, behavioral impairments and ultimately, death. Due to the likelihood of various scenarios of military or terrorist attacks by these and other chemical weapons, research has to be aimed at finding optimal therapies. Early accumulation of(More)
There are numerous methods designed to monitor brain neuropathologies resulting from a wide arsenal of insults. Regardless of the cause of neuronal death, reactive glial cells always appear at and around the site of degeneration. These cells are distinguished by the exceptional abundance of peripheral benzodiazepine receptors, particularly compared with(More)
The effects of chemically and electrically-induced convulsions on the binding of [3H]Ro 5-4864 to peripheral benzodiazepine receptors (PBR) was studied in both peripheral tissues and the central nervous system (CNS). Acute, maximal electroshock (MES) increased the density of PBR in mouse cerebral cortex as evidenced by a 30% increase in the Bmax of this(More)
Mice injected with the calcium agonist BAY K 8644 (2–4 mg/kg, i. p.) displayed profound behavioral changes including ataxia, decreased motor activity, Straub tail, arched back, limb clonus and tonus, and an increased sensitivity to auditory stimulation. BAY K 8644 significantly impaired rotorod performance in mice with an ED50 of 0.8 mg/kg. The behavioral(More)
Ro 5-4864 (4'-chlorodiazepam) elicited convulsions in mice with a CD50 of 23.5 mg/kg (i.p.) and increased the firing rate of substantia nigra zona reticulata neurons in a dose dependent fashion (0.5-4 mg/kg i.v.). Diazepam and clonazepam, but not Ro 15-1788, were potent inhibitors of Ro 5-4864 induced convulsions. Ro 15-1788 was also ineffective in(More)