Learn More
Understanding the cell-cell interactions that control CNS development and function has long been limited by the lack of methods to cleanly separate neural cell types. Here we describe methods for the prospective isolation and purification of astrocytes, neurons, and oligodendrocytes from developing and mature mouse forebrain. We used FACS(More)
The establishment of neural circuitry requires vast numbers of synapses to be generated during a specific window of brain development, but it is not known why the developing mammalian brain has a much greater capacity to generate new synapses than the adult brain. Here we report that immature but not mature astrocytes express thrombospondins (TSPs)-1 and -2(More)
The major cell classes of the brain differ in their developmental processes, metabolism, signaling, and function. To better understand the functions and interactions of the cell types that comprise these classes, we acutely purified representative populations of neurons, astrocytes, oligodendrocyte precursor cells, newly formed oligodendrocytes, myelinating(More)
Dead cells are observed in many developing animal tissues, but the causes of these normal cell deaths are mostly unknown. We show that about 50% of oligodendrocytes normally die in the developing rat optic nerve, apparently as a result of a competition for limiting amounts of survival signals. Both platelet-derived growth factor and insulin-like growth(More)
In this perspective, I review recent evidence that glial cells are critical participants in every major aspect of brain development, function, and disease. Far more active than once thought, glial cells powerfully control synapse formation, function, and blood flow. They secrete many substances whose roles are not understood, and they are central players in(More)
During development, the formation of mature neural circuits requires the selective elimination of inappropriate synaptic connections. Here we show that C1q, the initiating protein in the classical complement cascade, is expressed by postnatal neurons in response to immature astrocytes and is localized to synapses throughout the postnatal CNS and retina.(More)
Microglia are the resident CNS immune cells and active surveyors of the extracellular environment. While past work has focused on the role of these cells during disease, recent imaging studies reveal dynamic interactions between microglia and synaptic elements in the healthy brain. Despite these intriguing observations, the precise function of microglia at(More)
Vascular endothelial cells in the central nervous system (CNS) form a barrier that restricts the movement of molecules and ions between the blood and the brain. This blood-brain barrier (BBB) is crucial to ensure proper neuronal function and protect the CNS from injury and disease. Transplantation studies have demonstrated that the BBB is not intrinsic to(More)
Reactive astrogliosis is characterized by a profound change in astrocyte phenotype in response to all CNS injuries and diseases. To better understand the reactive astrocyte state, we used Affymetrix GeneChip arrays to profile gene expression in populations of reactive astrocytes isolated at various time points after induction using two mouse injury models,(More)
Two different monoclonal antibodies to the Thy-1 antigen, T11D7 and 2G12, were used to purify and characterize retinal ganglion cells from postnatal rat retina. Although Thy-1 has been reported to be a specific marker for ganglion cells in retina, retinal cell suspensions contained several other types of Thy-1-positive cells as well. Nevertheless, a simple(More)