Learn More
We investigated the effect of diazoxide on neuronal survival in primary cultures of rat cortical neurons against oxygen-glucose deprivation (OGD). Diazoxide pre-treatment induced delayed pre-conditioning and almost entirely attenuated the OGD-induced neuronal death. Diazoxide inhibited succinate dehydrogenase and induced mitochondrial depolarization, free(More)
Cortical spreading depression (CSD) has been documented to confer ischemic tolerance on brain. Although nitric oxide (NO) is a crucial mediator in preconditioning under certain circumstances, the role of NO in CSD-induced neuroprotection is unclear. We examined the effect of L-NAME, an inhibitor of NO synthase, on CSD-induced tolerance against transient(More)
BMS-191095, reportedly a selective mitoK(ATP) channel opener which is free from the known side effects of the prototype mitoK(ATP) channel opener diazoxide, induced acute and delayed preconditioning against glutamate excitotoxicity and delayed preconditioning against oxygen-glucose deprivation in primary cultures of rat cortical neurons. BMS-191095 dose(More)
Mitochondrial ATP-sensitive potassium (mitoK(ATP)) channel openers protect the piglet brain against ischemic stress. Effects of mitoK(ATP) channel agonists on isolated mitochondria, however, have not been directly examined. We investigated the effects of K(ATP) channel openers and blockers on membrane potential and on the production of reactive oxygen(More)
Recent studies suggest that activation of mitochondrial ATP-sensitive potassium channels (mK(ATP)) with diazoxide can protect neurons against ischemic stress. However, it is not yet known whether astrocytes, which are more resilient against ischemia, respond similarly to diazoxide. We exposed cultured astrocytes to oxygen-glucose deprivation (OGD) or(More)
We examined the effects of diazoxide, the putative mitochondrial adenosine triphosphate-sensitive potassium (mitoK(ATP)) channel opener, against glutamate excitotoxicity in primary cultures of rat cortical neurons. Cells were treated with diazoxide for 24 hr and then exposed to 200 microM glutamate. Cell viability was measured 24 hr after glutamate(More)
A unique feature of cerebral endothelial cells (CECs) is the formation of the blood-brain barrier (BBB), which contributes to the stability of the brain microenvironment. CECs are capable of producing several substances mediating endothelium-dependent vasorelaxation or vasoconstriction, regulating BBB permeability, and participating in the regulation of(More)
Adrenomedullin 2 (AM2, intermedin) is a recently identified new member of the calcitonin gene-related peptide family. We examined whether AM2 can attenuate the increased blood-brain barrier permeability and cerebral endothelial cell (CEC) death induced by oxidative stress in vitro. Hydrogen peroxide (H(2)O(2), 0.5 mM) induced a continuous decrease of the(More)
We determined COX-3 mRNA expression in regions of the rat central nervous system (CNS). On a regional basis, levels were the highest in choroid plexus and spinal chord followed by pituitary gland, hypothalamus, hippocampus, medulla, cerebellum, and cortex. COX-3 mRNA levels were higher in major brain arteries, and dramatically higher in brain microvessels.(More)
Prostaglandins produced in cerebral endothelial cells (CECs) are the final signal transduction mediators from the periphery to the brain during fever response. However, prostaglandins are organic anions at physiological pH, and they enter cells poorly using simple diffusion. Several transporters have been described that specifically transport prostaglandins(More)