Learn More
The germ line exhibits sexual dimorphism as do the somatic tissues. Cells with the 2X;2A chromosome constitution will follow the oogenic pathway and X;2A cells will develop into sperm. In both somatic and germ-line tissues, the sexual pathway chosen by the cells depends on the gene Sex-lethal (Sxl), whose function is continuously needed for female(More)
The Drosophila gene sine oculis (so), a nuclear homeoprotein that is required for eye development, has several homologues in vertebrates (the SIX gene family). Among them, SIX3 is considered to be the functional orthologue of so because it is strongly expressed in the developing eye. However, embryonic SIX3 expression is not limited to the eye field, and(More)
The HNF3/fork head family includes a large number of transcription factors that share a structurally related DNA binding domain. Fork head factors have been shown to play important roles both during development and in the adult. We now describe the cloning of a novel mammalian fork head factor that we have named FHX (fork head homologous X (FHX), which is(More)
In Drosophila melanogaster, sex determination and dosage compensation are under the control of the Sex-lethal (Sxl) gene. We have identified a gene, female-lethal-2-d (fl(2)d), located in the second chromosome, that interacts with Sxl. fl(2)d homozygous clones, induced during the larval stage of fl(2)d/+ females, develop male structures instead of female(More)
The Drosophila gene female-lethal(2)d [fl(2)d] interacts genetically with the master regulatory gene for sex determination, Sex-lethal. Both genes are required for the activation of female-specific patterns of alternative splicing on transformer and Sex-lethal pre-mRNAs. We have used P-element-mediated mutagenesis to identify the fl(2)d gene. The fl(2)d(More)
In Drosophila melanogaster, the female sexual development of the soma and the germline requires the activity of the gene Sxl. The somatic cells need the function of the gene fl(2)d to follow the female developmental pathway, due to its involvement in the female-specific splicing of Sxl RNA. Here we report the analysis of both fl(2)d1 and fl(2)d2 mutations:(More)
Alkaptonuria (AKU) occupies a unique place in the history of human genetics because it was the first disease to be interpreted as a mendelian recessive trait by Garrod in 1902. Alkaptonuria is a rare metabolic disorder resulting from loss of homogentisate 1,2 dioxygenase (HGO) activity. Affected individuals accumulate large quantities of homogentisic acid,(More)
The Drosophila gene sine oculis (so) is a nuclear homeoprotein that is required for eye development. Homologous genes to so, denoted SIX genes, have been found in vertebrates. Among the SIX genes, SIX3 is considered to be the functional homologue of so. To provide insight into the potential implications of SIX3 in human ocular malformations, we have cloned(More)
Many biological phenomena are dependent on mechanisms that fine-tune the expression levels of particular genes. This can be achieved by altering the relative activity of a single transcription factor, by post-translational modifications or by interaction with regulatory molecules. An alternative mechanism is based on competition between two or more(More)