Beau A. Standish

Learn More
Optical Coherence Tomography (OCT) angiography was applied to image functional hyperemia in different vascular compartments in the rat somatosensory cortex. Dynamic backscattering changes, indicative of changes in dynamic red blood cell (dRBC) content, were used to monitor the hemodynamic response. Three-dimensional movies depicting the microvascular(More)
Advances in swept source laser technology continues to increase the imaging speed of swept-source optical coherence tomography (SS-OCT) systems. These fast imaging speeds are ideal for microvascular detection schemes, such as speckle variance (SV), where interframe motion can cause severe imaging artifacts and loss of vascular contrast. However, full(More)
Optical coherence tomography (OCT) and optical coherence microscopy (OCM) allow the acquisition of quantitative three-dimensional axial flow by estimating the Doppler shift caused by moving scatter-ers. Measuring the velocity of red blood cells is currently the principal application of these methods. In many biological tissues, blood flow is often(More)
Three-dimensional high-resolution imaging methods are important for cellular-level research. Optical coherence microscopy (OCM) is a low-coherence-based interferometry technology for cellular imaging with both high axial and lateral resolution. Using a high-numerical-aperture objective, OCM normally has a shallow depth of field and requires scanning the(More)
Application of speckle variance optical coherence tomography (OCT) to endovascular imaging faces difficulty of extensive motion artifacts inherently associated with arterial pulsations in addition to other physiological movements. In this study, we employed a technique involving a fourth order statistical method, kurtosis, operating on the endovascular OCT(More)
  • Norman Lippok, Stéphane Coen, Poul Nielsen, Frédérique Vanholsbeeck, E D A Huang, C P Swanson +143 others
  • 2012
We address numerical dispersion compensation based on the use of the fractional Fourier transform (FrFT). The FrFT provides a new fundamental perspective on the nature and role of group-velocity dispersion in Fourier domain OCT. The dispersion induced by a 26 mm long water cell was compensated for a spectral bandwidth of 110 nm, allowing the theoretical(More)
A spectral domain optical coherence tomography (SD-OCT) system and an oral imaging probe have been developed to visualize the microstructural morphology and microvasculature in the human oral cavity. Structural OCT images of ex vivo pig oral tissues with the histology of the same sites were acquired and compared for correlations. Structural in vivo OCT(More)
Stability is of utmost importance to a wide range of phase-sensitive processing techniques. In Doppler optical coherence tomography and optical coherence elastography, in addition to defocus and aberration correction techniques such as interferometric synthetic aperture microscopy and computational/digital adaptive optics, a precise understanding of the(More)
We compare four optical coherence tomography techniques for noninvasive visualization of microcapillary network in the human retina and murine cortex. We perform phantom studies to investigate contrast-to-noise ratio for angiographic images obtained with each of the algorithm. We show that the computationally simplest absolute intensity difference(More)
Current imaging techniques capable of tracking nanoparticles in vivo supply either a large field of view or cellular resolution, but not both. Here, we demonstrate a multimodality imaging platform of optical coherence tomography (OCT) techniques for high resolution, wide field of view in vivo imaging of nanoparticles. This platform includes the first in(More)