Learn More
Ca(2+) signaling in mitochondria is important to tune mitochondrial function to a variety of extracellular stimuli. The main mechanism is Ca(2+) entry in mitochondria via the Ca(2+) uniporter followed by Ca(2+) activation of three dehydrogenases in the mitochondrial matrix. This results in increases in mitochondrial NADH/NAD ratios and ATP levels and(More)
The toxicity of L-3,4-dihydroxyphenylalanine (L-DOPA) was studied in neuronal cultures from rat mesencephalon. The survival and function of DA neurons were assessed by the number of tyrosine hydroxylase-positive (TH+) cells and 3H-DA uptake and those non-DA neurons by the exclusion of Trypan blue and the high-affinity 3H-GABA uptake. L-DOPA was toxic for(More)
Aralar is a mitochondrial calcium-regulated aspartate-glutamate carrier mainly distributed in brain and skeletal muscle, involved in the transport of aspartate from mitochondria to cytosol, and in the transfer of cytosolic reducing equivalents into mitochondria as a member of the malate-aspartate NADH shuttle. In the present study, we describe the(More)
The glutamate-glutamine cycle faces a drain of glutamate by oxidation, which is balanced by the anaplerotic synthesis of glutamate and glutamine in astrocytes. De novo synthesis of glutamate by astrocytes requires an amino group whose origin is unknown. The deficiency in Aralar/AGC1, the main mitochondrial carrier for aspartate-glutamate expressed in brain,(More)
PURPOSE Plitidepsin, given as a 1-hour weekly i.v. infusion for 3 consecutive weeks during a 4-week treatment cycle, was investigated in patients with solid tumors to determine the maximum tolerated dose and the recommended dose (RD) using this administration schedule. EXPERIMENTAL DESIGN Consecutive cohorts of patients with metastatic solid tumors or(More)
Aralar, the neuronal Ca(2+)-binding mitochondrial aspartate-glutamate carrier, has Ca(2+) binding domains facing the extramitochondrial space and functions in the malate-aspartate NADH shuttle (MAS). Here we showed that MAS activity in brain mitochondria is stimulated by extramitochondrial Ca(2+) with an S(0.5) of 324 nM. By employing primary neuronal(More)
The relationship between oxidative polymorphisms and the cause of Parkinson's disease is controversial. The drug 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), which induces parkinsonism in humans and in some animal models, is metabolized by cytochrome P450 db1 isozyme (the same enzymatic system implicated in 4-hydroxylation of debrisoquine). In this(More)
Levodopa, a dopamine (DA) precursor administered to patients with Parkinson's disease (PD), produces at 25-200 x 10(-6) M concentrations a dose-dependent reduction of 3H-DA uptake in foetal rat midbrain cultures. Also, a decrease in the number of viable cells and tyrosine hydroxylase (TH) positive neurones, plus disruption of the overall neuritic network(More)
Levodopa, at concentrations of 0.25 x 10(-4) M or larger, is toxic for the human neuroblastoma cell NB69. Toxicity is associated with high levels of quinones, increased activity of complex II-III, and lack of changes of complex I of the mitochondrial respiratory chain. Deprenyl, which does not alter the production of quinones, has a partial protective(More)
Neuronal respiration is controlled by ATP demand and Ca2+ but the roles played by each are unknown, as any Ca2+ signal also impacts on ATP demand. Ca2+ can control mitochondrial function through Ca2+-regulated mitochondrial carriers, the aspartate-glutamate and ATP-Mg/Pi carriers, ARALAR/AGC1 and SCaMC-3, respectively, or in the matrix after Ca2+ transport(More)