Beatriz A. Pacheco

Learn More
Human immunodeficiency virus (HIV-1) entry into cells is mediated by a trimeric complex consisting of noncovalently associated gp120 (exterior) and gp41 (transmembrane) envelope glycoproteins. The binding of gp120 to receptors on the target cell alters the gp120-gp41 relationship and activates the membrane-fusing capacity of gp41. Interaction of gp120 with(More)
The aim of this study was to evaluate the fibrinolytic system by measurement of fibrinogen, plasminogen, tissue-type plasminogen activator (t-PA), and plasminogen activator inhibitor-1 (PAI-1) in healthy normotensive subjects and in patients with essential hypertension. A group of 21 healthy normotensive subjects [age, 39.2 +/- 1.8 years; 8 males, 13(More)
The entry of human immunodeficiency virus (HIV-1) into cells is initiated by binding of the gp120 exterior envelope glycoprotein to the receptor, CD4. How does CD4 binding trigger conformational changes in gp120 that allow the gp41 transmembrane envelope glycoprotein to mediate viral-cell membrane fusion? The transition from the unliganded to the CD4-bound(More)
Human immunodeficiency virus (HIV-1) enters cells following sequential activation of the high-potential-energy viral envelope glycoprotein trimer by target cell CD4 and coreceptor. HIV-1 variants differ in their requirements for CD4; viruses that can infect coreceptor-expressing cells that lack CD4 have been generated in the laboratory. These(More)
The envelope (Env) glycoproteins of human immunodeficiency virus (HIV-1) mediate viral entry and are also the primary target of neutralizing antibodies. The gp160 envelope glycoprotein precursor undergoes proteolytic cleavage in the Golgi complex to produce the gp120 exterior glycoprotein and the gp41 transmembrane glycoprotein, which remain associated(More)
The trimeric envelope glycoprotein (Env) of human immunodeficiency virus type 1 (HIV-1) mediates virus entry into host cells. CD4 engagement with the gp120 exterior envelope glycoprotein subunit represents the first step during HIV-1 entry. CD4-induced conformational changes in the gp120 inner domain involve three potentially flexible topological layers(More)
The cross-species transmission of retroviruses is limited by host restriction factors that exhibit inter-species diversity. For example, the TRIM5α proteins of Old World monkeys block the early, post-entry steps in human immunodeficiency virus (HIV-1) infection. We adapted an HIV-1 isolate to replicate in cells expressing TRIM5α(rh) from rhesus monkeys, an(More)
Gp120 is a critical component of the envelope of HIV-1. Its role in viral entry is well described. In view of its position on the viral envelope, gp120 is a part of the retrovirus that immune cells encounter first and has the potential to influence antiretroviral immune responses. We propose that high levels of gp120 are present in tissues and may(More)
Foamy virus evolution closely parallels that of the host species, indicating virus-host coadaptation. We studied simian foamy viruses (SFVs) from common marmosets, spider monkeys, and squirrel monkeys, New World monkey (NWM) species that share geographic ranges. The TRIM5alpha protein from each of these NWM species inhibited the replication of at least one(More)
Metastable conformations of the gp120 and gp41 envelope glycoproteins of human immunodeficiency virus type 1 (HIV-1) and simian immunodeficiency virus (SIV) must be maintained in the unliganded state of the envelope glycoprotein trimer. Binding of gp120 to the primary receptor, CD4, triggers the transition to an open conformation of the trimer, promoting(More)