Beatriz A. Pacheco

Learn More
The entry of human immunodeficiency virus (HIV-1) into cells is initiated by binding of the gp120 exterior envelope glycoprotein to the receptor, CD4. How does CD4 binding trigger conformational changes in gp120 that allow the gp41 transmembrane envelope glycoprotein to mediate viral-cell membrane fusion? The transition from the unliganded to the CD4-bound(More)
Human immunodeficiency virus (HIV-1) enters cells following sequential activation of the high-potential-energy viral envelope glycoprotein trimer by target cell CD4 and coreceptor. HIV-1 variants differ in their requirements for CD4; viruses that can infect coreceptor-expressing cells that lack CD4 have been generated in the laboratory. These(More)
Human immunodeficiency virus (HIV-1) entry into cells is mediated by a trimeric complex consisting of noncovalently associated gp120 (exterior) and gp41 (transmembrane) envelope glycoproteins. The binding of gp120 to receptors on the target cell alters the gp120-gp41 relationship and activates the membrane-fusing capacity of gp41. Interaction of gp120 with(More)
The trimeric envelope glycoprotein (Env) of human immunodeficiency virus type 1 (HIV-1) mediates virus entry into host cells. CD4 engagement with the gp120 exterior envelope glycoprotein subunit represents the first step during HIV-1 entry. CD4-induced conformational changes in the gp120 inner domain involve three potentially flexible topological layers(More)
Human immunodeficiency virus type 1 (HIV-1) infection encounters an early block in the cells of New World monkeys because the CD4 receptor does not efficiently support HIV-1 entry. We adapted HIV-1(NL4-3) and HIV-1(KB9), two HIV-1 variants with different envelope glycoproteins, to replicate efficiently in cells expressing the CD4 and CXCR4 proteins of the(More)
The tripartite motif protein TRIM5α restricts particular retrovirus infections by binding to the incoming capsid and inhibiting the early stage of virus infection. The TRIM5α RING domain exhibits E3 ubiquitin ligase activity and assists the higher-order association of TRIM5α dimers, which promotes capsid binding. We characterized a panel of RING domain(More)
Metastable conformations of the gp120 and gp41 envelope glycoproteins of human immunodeficiency virus type 1 (HIV-1) and simian immunodeficiency virus (SIV) must be maintained in the unliganded state of the envelope glycoprotein trimer. Binding of gp120 to the primary receptor, CD4, triggers the transition to an open conformation of the trimer, promoting(More)
Human immunodeficiency virus type 1 (HIV-1) coreceptor usage and tropism can be modulated by the V3 loop sequence of the gp120 exterior envelope glycoprotein. For coreceptors, R5 viruses use CCR5, X4 viruses use CXCR4, and dual-tropic (R5X4) viruses use either CCR5 or CXCR4. To understand the requirements for dual tropism, we derived and analyzed a(More)
Human immunodeficiency virus type 1 (HIV-1) has evolved a sophisticated strategy to conceal conserved epitopes of its envelope glycoproteins (Env) recognized by antibody-dependent cellular cytotoxicity (ADCC)-mediating antibodies. These antibodies, which are present in the sera of most HIV-1-infected individuals, preferentially recognize Env in its(More)
In nature, primate lentiviruses infect humans and several Old World monkeys and apes. However, to date, lentiviruses infecting New World monkeys have not been described. We studied the susceptibility of common marmoset cells to HIV-1 infection and observed the presence of post-entry blocks to the early phase of HIV-1 infection in peripheral blood(More)