Beatrice Del Papa

Learn More
Hastening posttransplantation immune reconstitution is a key challenge in human leukocyte antigen (HLA)-haploidentical hematopoietic stem-cell transplantation (HSCT). In experimental models of mismatched HSCT, T-regulatory cells (Tregs) when co-infused with conventional T cells (Tcons) favored posttransplantation immune reconstitution and prevented lethal(More)
OBJECTIVE Despite much investigation into T regulatory cells (Tregs), little is known about the mechanism controlling their recruitment and function. Because multipotent mesenchymal stromal cells (MSCs) exert an immune regulatory function and suppress T-cell proliferation, this in vitro study investigated their role in Treg recruitment and function. (More)
INTRODUCTION Haploidentical transplantation, with extensive T cell depletion to prevent GvHD, is associated with a high incidence of infection-related deaths. The key challenge is to improve immune recovery with allogeneic donor T cells without triggering GvHD. As T regulatory cells (Tregs) controlled GvHD in pre-clinical studies, the present study(More)
Posttransplant relapse is still the major cause of treatment failure in high-risk acute leukemia. Attempts to manipulate alloreactive T cells to spare normal cells while killing leukemic cells have been unsuccessful. In HLA-haploidentical transplantation, we reported that donor-derived T regulatory cells (Tregs), coinfused with conventional T cells (Tcons),(More)
Notch1 signaling is involved in regulatory T (Treg)-cell differentiation. We previously demonstrated that, when cocultured with CD3(+) cells, mesenchymal stem cells (MSCs) induced a T-cell population with a regulatory phenotype. Here, we investigated the molecular mechanism underlying MSC induction of human Treg cells. We show that the Notch1 pathway is(More)
γ-Secretase inhibitors (GSIs) have been proposed for combined therapies of malignancies with a dysregulated Notch signaling. GSI I (Z-Leu-Leu-Nle-CHO) induces apoptosis of some tumor cells by inhibiting proteasome and Notch activity. Alterations in these two cell survival regulators contribute to apoptosis resistance of chronic lymphocytic leukemia (CLL)(More)
In chronic lymphocytic leukemia (CLL), Notch1 and Notch2 signaling is constitutively activated and contributes to apoptosis resistance. We show that genetic inhibition of either Notch1 or Notch2, through small-interfering RNA, increases apoptosis of CLL cells and is associated with decreased levels of the anti-apoptotic protein Mcl-1. Thus, Notch signaling(More)
Retroviral vectors are used in human gene therapy trials to stably introduce therapeutic genes in the genome of patients' cells. Their applicability, however, is frustrated by the limited viability of transformed cells and/or by risks linked to selection of oncogene-mutated clones. The reasons for these drawbacks are not yet completely understood. In this(More)
BACKGROUND AIMS The impact of chronic lymphatic leukemia (CLL) tumor burden on the autologous immune system has already been demonstrated. This study attempted to elucidate the molecular mechanisms underlying T-cell immunologic deficiencies in CLL. METHODS Freshly isolated CD3(+) T cells from patients with a diagnosis of CLL and healthy donors were(More)