Beata Weber-Dąbrowska

Learn More
Bacteriophage KP34 is a novel virus belonging to the subfamily Autographivirinae lytic for extended-spectrum β-lactamase-producing Klebsiella pneumoniae strains. Its biological features, morphology, susceptibility to chemical and physical agents, burst size, host specificity and activity spectrum were determined. As a potential antibacterial agent used in(More)
Members of the genus Klebsiella are among the leading microbial pathogens associated with nosocomial infection. The increased incidence of antimicrobial resistance in these species has propelled the need for alternate/combination therapeutic regimens to aid clinical treatment. Bacteriophage therapy forms one of these alternate strategies. Electron(More)
BACKGROUND Bacteriophages can be successfully applied to treat infections caused by antibiotic-resistant bacteria. Until now no attempts have been undertaken to treat infections in immunosuppressed patients with phages. In this work we investigated the prophylactic efficacy of specific bacteriophages in CBA mice treated with cyclophosphamide (CP) and(More)
Bacteriophages (phages) are viruses of bacteria. Here we evaluated the effects of T4 and A3/R bacteriophages, as well as phage-generated bacterial lysates, on differentiation of human myeloid dendritic cells (DCs) from monocytes. Neither of the phages significantly reduced the expression of markers associated with differentiation of DCs and their role in(More)
Bacteriophages (phages), discovered 100 years ago, are able to infect and destroy only bacterial cells. In the current crisis of antibiotic efficacy, phage therapy is considered as a supplementary or even alternative therapeutic approach. Evolution of multidrug-resistant and pandrug-resistant bacterial strains poses a real threat, so it is extremely(More)
A growing body of data shows that bacteriophages can interact with different kinds of immune cells. The objective of this study was to investigate whether T4 bacteriophage and T4-generated Escherichia coli lysate affect functions of monocytes, the key population of immune cells involved in antibacterial immunity. To that end, we evaluated how T4 and E. coli(More)
In this study, we investigated the humoral immune response (through the release of IgG, IgA, and IgM antiphage antibodies) to a staphylococcal phage cocktail in patients undergoing experimental phage therapy at the Phage Therapy Unit, Medical Center of the Ludwik Hirszfeld Institute of Immunology and Experimental Therapy in Wrocław, Poland. We also(More)
Antimicrobial resistance is considered to be one of the greatest challenges of medicine and our civilization. Lack of progress in developing new anti-bacterial agents has greatly revived interest in using phage therapy to combat antibiotic-resistant infections. Although a number of clinical trials are underway and more are planned, the realistic perspective(More)
Intracellular killing of bacteria is one of the fundamental mechanisms against invading pathogens. Impaired intracellular killing of bacteria by phagocytes may be the reason of chronic infections and may be caused by antibiotics or substances that can be produced by some bacteria. Therefore, it was of great practical importance to examine whether phage(More)