Baylor Fox-Kemper

Learn More
Ageostrophic baroclinic instabilities develop within the surface mixed layer of the ocean at horizontal fronts and efficiently restratify the upper ocean. In this paper a parameterization for the restratification driven by finite-amplitude baroclinic instabilities of the mixed layer is proposed in terms of an overturning streamfunction that tilts isopycnals(More)
The El Niño–Southern Oscillation (ENSO) response to anthropogenic climate change is assessed in the following 18 nominal resolution Community Climate System Model, version 4 (CCSM4) Coupled Model Intercomparison Project phase 5 (CMIP5) simulations: twentieth-century ensemble, preindustrial control, twenty-first-century projections, and stabilized 2100–2300(More)
[1] Large eddy simulations of the Craik-Leibovich equations are used to assess the effect of misaligned Stokes drift and wind direction on Langmuir cells in the ocean mixed layer. Misalignments from 0! to 135! are examined and Langmuir turbulence structures are evident in all cases. The Stokes drift is modeled using a broadband empirical spectrum, and cases(More)
A new method to quantify changes in El Niño–Southern Oscillation (ENSO) variability is presented, using the overlap between probability distributions of the wavelet spectrum as measured by the wavelet probability index (WPI). Examples are provided using long integrations of three coupled climate models. When subsets of Niño-3.4 time series are compared, the(More)
The Argo profiling float network has repeatedly sampled much of the World Ocean. This study uses Argo temperature and salinity data to form the tracer structure function of ocean variability at the macroscale (10–1000 km, mesoscale and above). Here, second-order temperature and salinity structure functions over horizontal separations are calculated along(More)
A parameterization for the restratification by finite-amplitude, submesoscale, mixed layer eddies, formulated as an overturning streamfunction, has been recently proposed to approximate eddy fluxes of density and other tracers. Here, the technicalities of implementing the parameterization in the coarseresolution ocean component of global climate models are(More)
[1] The turbulent mixing in thin ocean surface boundary layers (OSBL), which occupy the upper 100 m or so of the ocean, control the exchange of heat and trace gases between the atmosphere and ocean. Here we show that current parameterizations of this turbulent mixing lead to systematic and substantial errors in the depth of the OSBL in global climate(More)
[1] Nearly all operational ocean models use air-sea fluxes and the ocean shear and stratification to estimate upper ocean boundary layer mixing rates. This approach implicitly parameterizes surface wave effects in terms of these inputs. Here we test this assumption using parallel experiments in a lake with small waves and in the open ocean with much bigger(More)
As compared to conventional methods of ocean surface currents measurement, spaceborne Synthetic Aperture Radar (SAR) offers cloud-penetrating ocean current observation capability at high spatial resolution. While some studies have shown the potential of SAR for studying ocean surface currents through feature tracking, they have only analyzed a few images to(More)