Learn More
Frequent closed itemsets (FCI) play an important role in pruning redundant rules fast. Therefore, a lot of algorithms for mining FCI have been developed. Algorithms based on vertical data formats have some advantages in that they require scan databases once and compute the support of itemsets fast. Recent years, BitTable (Dong & Han, 2007) and IndexBitTable(More)
The mining frequent itemsets plays an important role in the mining of association rules. Frequent itemsets are typically mined from binary databases where each item in a transaction may have a different significance. Mining Frequent Weighed Itemsets (FWI) from weighted items transaction databases addresses this issue. This paper therefore proposes(More)
Building a high accuracy classifier for classification is a problem in real applications. One high accuracy classifier used for this purpose is based on association rules. In the past, some researches showed that classification based on association rules (or class-association rules – CARs) has higher accuracy than that of other rule-based methods, such as(More)
Erasable itemset (EI) mining is an interesting variation of frequent itemset mining which allows managers to carefully consider their production plans to ensure the stability of the factory. Existing algorithms for EI mining require a lot of time and memory. This paper proposes an effective algorithm, called mining erasable itemsets (MEI), which uses the(More)
This paper proposes an improved version of the MERIT algorithm, dMERIT+, for mining all “erasable itemsets”. We first establish an algorithm MERIT+, a revised version of MERIT, which is then used as the foundation for dMERIT+. The proposed algorithm uses: a weight index, a hash table and the “difference” of Node Code Sets (dNC-Sets) to improve the mining(More)