Learn More
Mycobacterium tuberculosis contains five resuscitation-promoting factor (Rpf)-like proteins, RpfA-E, that are implicated in resuscitation of this organism from dormancy via a mechanism involving hydrolysis of the peptidoglycan by Rpfs and partnering proteins. In this study, the rpfA-E genes were shown to be collectively dispensable for growth of M.(More)
In Mycobacterium tuberculosis (Mtb), damage-induced mutagenesis is dependent on the C-family DNA polymerase, DnaE2. Included with dnaE2 in the Mtb SOS regulon is a putative operon comprising Rv3395c, which encodes a protein of unknown function restricted primarily to actinomycetes, and Rv3394c, which is predicted to encode a Y-family DNA polymerase. These(More)
Mycobacterium tuberculosis is predicted to subsist on alternative carbon sources during persistence within the human host. Catabolism of odd- and branched-chain fatty acids, branched-chain amino acids, and cholesterol generates propionyl-coenzyme A (CoA) as a terminal, three-carbon (C(3)) product. Propionate constitutes a key precursor in lipid biosynthesis(More)
The inherent drug susceptibility of microorganisms is determined by multiple factors, including growth state, the rate of drug diffusion into and out of the cell, and the intrinsic vulnerability of drug targets with regard to the corresponding antimicrobial agent. Mycobacterium tuberculosis, the causative agent of tuberculosis (TB), remains a significant(More)
Transcription profiling of genes encoding components of the respiratory chain and the ATP synthesizing apparatus of Mycobacterium tuberculosis was conducted in vivo in the infected mouse lung, and in vitro in bacterial cultures subjected to gradual oxygen depletion and to nitric oxide treatment. Transcript levels changed dramatically as infection progressed(More)
UNLABELLED Mycobacterium tuberculosis depends on aerobic respiration for growth and utilizes an aa3-type cytochrome c oxidase for terminal electron transfer. Cytochrome c maturation in bacteria requires covalent attachment of heme to apocytochrome c, which occurs outside the cytoplasmic membrane. We demonstrate that in M. tuberculosis the thioredoxin-like(More)
Most mycobacterial species possess a full complement of genes for the biosynthesis of molybdenum cofactor (MoCo). However, a distinguishing feature of members of the Mycobacterium tuberculosis complex is their possession of multiple homologs associated with the first two steps of the MoCo biosynthetic pathway. A mutant of M. tuberculosis lacking the(More)
Genetic systems that allow mycobacterial genomes to be mutagenized in a targeted or random fashion have provided the means for developing new tools for the diagnosis, prevention and treatment of tuberculosis by allowing potential targets to be identified and validated. In this review, we highlight key historical developments in the field of mycobacterial(More)
Mycobacterium tuberculosis (Mtb) and other members of the Mtb complex possess an expanded complement of genes for the biosynthesis of molybdenum cofactor (MoCo), a tricyclic pterin molecule that is covalently attached to molybdate. This cofactor allows the redox properties of molybdenum to be harnessed by enzymes in order to catalyze redox reactions in(More)
BACKGROUND Mycobacterium tuberculosis can enter into a dormant state which has resulted in one third of the world's population being infected with latent tuberculosis making the study of latency and reactivation of utmost importance. M. tuberculosis encodes five resuscitation promoting factors (Rpfs) that bear strong similarity to a lysozyme-like enzyme(More)