Batia Liefshitz

Learn More
DNA double-strand breaks (DSBs) are dangerous lesions that can lead to genomic instability and cell death. Eukaryotic cells repair DSBs either by nonhomologous end-joining (NHEJ) or by homologous recombination. We investigated the ability of yeast cells (Saccharomyces cerevisiae) to repair a single, chromosomal DSB by recombination at different stages of(More)
The presence of repeated sequences in the genome represents a potential source of karyotypic instability. Genetic control of recombination is thus important to preserve the integrity of the genome. To investigate the genetic control of recombination between repeated sequences, we have created a series of isogenic strains in which we could assess the role of(More)
Replication-factor C (RFC) is a protein complex that loads the processivity clamp PCNA onto DNA. Elg1 is a conserved protein with homology to the largest subunit of RFC, but its function remained enigmatic. Here, we show that yeast Elg1 interacts physically and genetically with PCNA, in a manner that depends on PCNA modification, and exhibits preferential(More)
DNA double-strand breaks (DSBs) and other lesions occur frequently during cell growth and in meiosis. These are often repaired by homologous recombination (HR). HR may result in the formation of DNA structures called Holliday junctions (HJs), which need to be resolved to allow chromosome segregation. Whereas HJs are present in most HR events in meiosis, it(More)
Recombination plays a central role in the repair of broken chromosomes in all eukaryotes. We carried out a systematic study of mitotic recombination. Using several assays, we established the chronological sequence of events necessary to repair a single double-strand break. Once a chromosome is broken, yeast cells become immediately committed to(More)
We have created an isogenic series of yeast strains that carry genetic systems to monitor different types of recombination and mutation [B. Liefshitz, A. Parket, R. Maya, M. Kupiec, The role of DNA repair genes in recombination between repeated sequences in yeast, Genetics 140 (1995) 1199-1211.]. In the present study we characterize the effect of mutations(More)
Homologous recombination can result in the transfer of genetic information from one DNA molecule to another (gene conversion). These events are often accompanied by a reciprocal exchange between the interacting molecules (termed "crossing over"). This association suggests that the two types of events could be mechanistically related. We have analyzed the(More)
The RAD52 group of genes in the yeast Saccharomyces cerevisiae controls the repair of DNA damage by a recombinational mechanism. Despite the growing evidence for physical and biochemical interactions between the proteins of this repair group, mutations in individual genes show very different effects on various types of recombination. The RAD59 gene encodes(More)
Double-strand breaks (DSBs) occur frequently during cell growth. Due to the presence of repeated sequences in the genome, repair of a single DSB can result in gene conversion, translocation, deletion or tandem duplication depending on the mechanism and the sequence chosen as partner for the recombinational repair. Here, we study how yeast cells repair a(More)
Many overlapping surveillance and repair mechanisms operate in eukaryotic cells to ensure the stability of the genome. We have screened to isolate yeast mutants exhibiting increased levels of recombination between repeated sequences. Here we characterize one of these mutants, elg1. Strains lacking Elg1p exhibit elevated levels of recombination between(More)