Basil Rapoport

Learn More
BACKGROUND Thyrotropin receptor (TSHR) antibodies that stimulate the thyroid (TSAb) cause Graves' hyperthyroidism and TSHR antibodies which block thyrotropin action (TBAb) are occasionally responsible for hypothyroidism. Unusual patients switch from TSAb to TBAb (or vice versa) with concomitant thyroid function changes. We have examined case reports to(More)
Graves disease, a common organ-specific autoimmune disease affecting humans, differs from all other autoimmune diseases in being associated with target organ hyperfunction rather than organ damage. Clinical thyrotoxicosis is directly caused by autoantibodies that activate the thyrotropin receptor (TSHR). The etiology of Graves disease is multifactorial,(More)
Graves' hyperthyroidism can be induced in mice or hamsters by novel approaches, namely injecting cells expressing the TSH receptor (TSHR) or vaccination with TSHR-DNA in plasmid or adenoviral vectors. These models provide unique insight into several aspects of Graves' disease: 1) manipulating immunity toward Th1 or Th2 cytokines enhances or suppresses(More)
To define the sites in the extracellular domain of the human thyrotropin (TSH) receptor that are involved in TSH binding and signal transduction we constructed chimeric thyrotropin-luteinizing hormone/chorionic gonadotropin (TSH-LH/CG) receptors. The extracellular domain of the human TSH receptor was divided into five regions that were replaced, either(More)
We screened a human thyroid cDNA library with two synthetic oligonucleotides based on the reported amino acid sequence of the 3rd and 4th transmembrane domains of a putative human TSH receptor and related receptors. The nucleotide sequence of a 4 kb clone revealed an open reading frame of 764 amino acids (86,816 Daltons) with a putative signal peptide,(More)
Graves' hyperthyroidism, an organ-specific autoimmune disease mediated by stimulatory thyrotropin receptor (TSHR) autoantibodies, has been considered a Th2-dominant disease. However, recent data with mouse Graves' models are conflicting. For example, we recently demonstrated that injection of BALB/c mice with adenovirus coding the TSHR induced Graves'(More)
CS-17 is a murine monoclonal antibody to the human TSH receptor (TSHR) with both inverse agonist and antagonist properties. Thus, in the absence of ligand, CS-17 reduces constitutive TSHR cAMP generation and also competes for TSH binding to the receptor. The present data indicate that for both of these functions, the monovalent CS-17 Fab (50 kDa) behaves(More)
We observed amino acid homology between the cysteine-rich N terminus of the thyrotropin receptor (TSHR) ectodomain and epidermal growth factor-like repeats in the laminin gamma1 chain. Thyroid-stimulating autoantibodies (TSAb), the cause of Graves' disease, interact with this region of the TSHR in a manner critically dependent on antigen conformation. We(More)
We studied the role of glycosylation in the expression of a functional human TSH receptor. Oligonucleotide-directed mutagenesis was used to replace, separately or together, the Asn codons with Gln in each of the six potential glycosylation sites in the receptor. Recombinant wild-type and mutated TSH receptors were stably expressed in Chinese hamster ovary(More)