Bartlomiej Sniezynski

Learn More
Knowledge Visualizer (KV) uses a General Logic Diagram (GLD) to display examples and/or various forms of knowledge learned from them in a planar model of a multi-dimensional discrete space. Knowledge can be in different forms, for example, decision rules, decision trees, logical expressions, clusters, classifiers, and neural nets with discrete input(More)
—Reinforcement learning suffers from inefficiency when the number of potential solutions to be searched is large. This paper describes a method of improving reinforcement learning by applying rule induction in multi-agent systems. Knowledge captured by learned rules is used to reduce search space in reinforcement learning, allowing it to shorten learning(More)
In this paper we propose an agent-based system for Service-Oriented Architecture self-adaptation. Services are supervised by autonomous agents which are responsible for deciding which service should be chosen for interoperation. Agents learn the choice strategy autonomously using supervised learning. In experiments we show that supervised learning (Na¨ıve(More)