Learn More
In vivo studies of jaw-muscle behavior have been integral factors in the development of our current understanding of the primate masticatory apparatus. However, even though it has been shown that food textures and mechanical properties influence jaw-muscle activity during mastication, very little effort has been made to quantify the relationship between the(More)
The tufted capuchin (Cebus apella) has been used in a number of comparative studies to represent a primate with craniofacial morphology indicative of hard-object feeding. Researchers have specifically referred to the tufted capuchin as a seed predator. Craniofacial features exhibited by the tufted capuchin, such as thick cortical bone in the mandibular(More)
A fundamental challenge of morphology is to identify the underlying evolutionary and developmental mechanisms leading to correlated phenotypic characters. Patterns and magnitudes of morphological integration and their association with environmental variables are essential for understanding the evolution of complex phenotypes, yet the nature of the relevant(More)
The biomechanical significance of cranial sutures in primates is an open question because their global impact is unclear, and their material properties are difficult to measure. In this study, eight suture-bone functional units representing eight facial sutures were created in a finite element model of a monkey cranium. All the sutures were assumed to have(More)
Australopithecus africanus is an early hominin (i.e., human relative) believed to exhibit stress-reducing adaptations in its craniofacial skeleton that may be related to the consumption of resistant food items using its premolar teeth. Finite element analyses simulating molar and premolar biting were used to test the hypothesis that the cranium of A.(More)
Understanding how the skull transmits and dissipates forces during feeding provides insights into the selective pressures that may have driven the evolution of primate skull morphology. Traditionally, researchers have interpreted masticatory biomechanics in terms of simple global loading regimes applied to simple shapes (i.e., bending in sagittal and(More)
The genus Cebus is one of the best extant models for examining the role of fallback foods in primate evolution. Cebus includes the tufted capuchins, which exhibit skeletal features for the exploitation of hard and tough foods. Paradoxically, these seemingly "specialized" taxa belong to the most ubiquitous group of closely related primates in South America,(More)
The midfacial skeleton in the human lineage demonstrates a wide spectrum of variation that may be the consequence of different environmental and mechanical selective pressures. However, different facial configurations may develop under comparable selective regimes. For example, the Neanderthal high and projected face and the Inuit broad and flat face are(More)
In a broad range of evolutionary studies, an understanding of intraspecific variation is needed in order to contextualize and interpret the meaning of variation between species. However, mechanical analyses of primate crania using experimental or modeling methods typically encounter logistical constraints that force them to rely on data gathered from only(More)
Humans can use hand tools smoothly and effectively in varying circumstances; in other words, skillfully. A few other species of primates crack encased foods using hammer tools and anvils. Are they skilled? Positioning the food on the anvil so that it does not fall off when struck is a component of skilled cracking. We discovered that bearded capuchin(More)