Bart Westendorp

Learn More
E2F transcription factors are known to be important for timely activation of G(1)/S and G(2)/M genes required for cell cycle progression, but transcriptional mechanisms for deactivation of cell cycle-regulated genes are unknown. Here, we show that E2F7 is highly expressed during mid to late S-phase, occupies promoters of G(1)/S-regulated genes and represses(More)
Recently, we showed that E2F7 and E2F8 (E2F7/8) are critical regulators of angiogenesis through transcriptional control of VEGFA in cooperation with HIF. (1) Here we investigate the existence of other novel putative angiogenic E2F7/8-HIF targets, and discuss the role of the RB-E2F pathway in regulating angiogenesis during embryonic and tumor development.
E2F transcription factors are important regulators of the cell cycle, and unrestrained activation of E2F-dependent transcription is considered to be an important driver of tumor formation and progression. Although highly expressed in normal skin and skin cancer, the role of the atypical E2Fs, E2F7 and E2F8, in keratinocyte homeostasis, regeneration and(More)
BACKGROUND The antihypertensive and renoprotective effects of ACE inhibitor (ACEi) therapy are enhanced by inducing a negative sodium balance. Whether this strategy also improves outcome of chronic ACEi treatment after myocardial infarction (MI) is unknown. Therefore, we investigated whether hydrochlorothiazide (HCTZ) or dietary sodium restriction further(More)
  • 1