Learn More
Software defect prediction strives to improve software quality and testing efficiency by constructing predictive classification models from code attributes to enable a timely identification of fault-prone modules. Several classification models have been evaluated for this task. However, due to inconsistent findings regarding the superiority of one(More)
In recent years, Support Vector Machines (SVMs) were successfully applied to a wide range of applications. Their good performance is achieved by an implicit non-linear transformation of the original problem to a high-dimensional (possibly infinite) feature space in which a linear decision hyperplane is constructed that yields a nonlinear classifier in the(More)
Driven by the need to allocate capital in a profitable way and by the recently suggested Basel II regulations, financial institutions are being more and more obliged to build credit scoring models assessing the risk of default of their clients. Many techniques have been suggested to tackle this problem. Support Vector Machines (SVMs) is a promising new(More)
A predictive model is required to be accurate and comprehensible in order to inspire confidence in a business setting. Both aspects have been assessed in a software effort estimation setting by previous studies. However, no univocal conclusion as to which technique is the most suited has been reached. This study addresses this issue by reporting on the(More)
Customer churn prediction models aim to detect customers with a high propensity to attrite. Predictive accuracy, comprehensibility, and justifiability are three key aspects of a churn prediction model. An accurate model permits to correctly target future churners in a retention marketing campaign, while a com-prehensible and intuitive rule-set allows to(More)
Whereas newer machine learning techniques, like artificial neural networks and support vector machines, have shown superior performance in various benchmarking studies, the application of these techniques remains largely restricted to research environments. A more widespread adoption of these techniques is foiled by their lack of explanation capability(More)