Barry W. Connors

Learn More
Slices of sensorimotor and anterior cingulate cortex from guinea pigs were maintained in vitro and bathed in a normal physiological medium. Electrophysiological properties of neurons were assessed with intracellular recording techniques. Some neurons were identified morphologically by intracellular injection of the fluorescent dye Lucifer yellow CH. Three(More)
Inhibitory interneurons are critical to sensory transformations, plasticity and synchronous activity in the neocortex. There are many types of inhibitory neurons, but their synaptic organization is poorly understood. Here we describe two functionally distinct inhibitory networks comprising either fast-spiking (FS) or low-threshold spiking (LTS) neurons.(More)
Normal operations of the neocortex depend critically on several types of inhibitory interneurons, but the specific function of each type is unknown. One possibility is that interneurons are differentially engaged by patterns of activity that vary in frequency and timing. To explore this, we studied the strength and short-term dynamics of chemical synapses(More)
Neurons of the neocortex differ dramatically in the patterns of action potentials they generate in response to current steps. Regular-spiking cells adapt strongly during maintained stimuli, whereas fast-spiking cells can sustain very high firing frequencies with little or no adaptation. Intrinsically bursting cells generate clusters of spikes (bursts),(More)
We have developed a novel slice preparation of the mouse somatosensory forebrain. This preparation is unique in including both the ventrobasal nucleus of the thalamus and the sensorimotor "barrel" cortex in a 400-microns-thick slice with the functional connectivity between them preserved, and in allowing direct visualization of the various components of the(More)
The thalamus provides fundamental input to the neocortex. This input activates inhibitory interneurons more strongly than excitatory neurons, triggering powerful feedforward inhibition. We studied the mechanisms of this selective neuronal activation using a mouse somatosensory thalamocortical preparation. Notably, the greater responsiveness of inhibitory(More)
Synapses are continually regulated by chemical modulators and by their own activity. We tested the specificity of regulation in two excitatory pathways of the neocortex: thalamocortical (TC) synapses, which mediate specific inputs, and intracortical (IC) synapses, which mediate the recombination of cortical information. Frequency-sensitive depression was(More)
The neocortex has at least two different networks of electrically coupled inhibitory interneurons: fast-spiking (FS) and low-threshold-spiking (LTS) cells. Agonists of metabotropic glutamate or acetylcholine receptors induced synchronized spiking and membrane fluctuations, with irregular or rhythmic patterns, in networks of LTS cells. LTS activity was(More)
Inhibitory interneurons often generate synchronous activity as an emergent property of their interconnections. To determine the role of electrical synapses in such activity, we constructed mice expressing histochemical reporters in place of the gap junction protein Cx36. Localization of the reporter with somatostatin and parvalbumin suggested that Cx36 was(More)
Thalamocortical (TC) synapses carry information into the neocortex, but they are far outnumbered by excitatory intracortical (IC) synapses. We measured the synaptic properties that determine the efficacy of TC and IC axons converging onto spiny neurons of layer 4 in the mouse somatosensory cortex. Quantal events from TC and IC synapses were(More)