Barry Trimmer

Learn More
The principal locomotory appendages of larval Manduca sexta, the prolegs, bear at their tips an array of mechanosensory hairs (the planta hairs). Each of the single sensory neurones associated with a planta hair sends an axon into the ganglion of the same segment where the afferent terminals make synaptic contact with interneurones and motoneurones.(More)
Caterpillar crawling is distinct from that of worms and molluscs; it consists of a series of steps in different body segments that can be compared to walking and running in animals with stiff skeletons. Using a three-dimensional kinematic analysis of horizontal crawling in Manduca sexta, the tobacco hornworm, we found that the phase of vertical displacement(More)
Bioluminescent flashing is essential for firefly reproduction, yet the specific molecular mechanisms that control light production are not well understood. We report that light production by fireflies can be stimulated by nitric oxide (NO) gas in the presence of oxygen and that NO scavengers block bioluminescence induced by the neurotransmitter octopamine.(More)
In this paper, we examine the mechanical properties of muscles in a soft-bodied arthropod under both passive and stimulated conditions. In particular, we examine the ventral interior lateral muscle of the tobacco hornworm caterpillar, Manduca sexta, and show that its response is qualitatively similar to the behaviour of particle-reinforced rubber. Both(More)
Rolling locomotion using an external force such as gravity has evolved many times. However, some caterpillars can curl into a wheel and generate their own rolling momentum as part of an escape repertoire. This change in body conformation occurs well within 100 ms and generates a linear velocity over 0.2 m s(-1), making it one of the fastest self-propelled(More)
With recent advances in materials, interest is being applied to the idea of robots with few if any rigid parts, able to substantially deform themselves in order to flow around, and even through objects. In order to accomplish these goals in an efficient and affordable manner, space and power will be at a premium, and so soft robots will most likely be both(More)
In Manduca sexta larvae, sensory neurons innervating planta hairs on the tips of the prolegs make monosynaptic excitatory connections with motoneurons innervating proleg retractor muscles. Tactile stimulation of the hairs evokes reflex retraction of the proleg. In this study we examined activity-dependent changes in the amplitude of the excitatory(More)
Muscular hydrostats (such as mollusks), and fluid-filled animals (such as annelids), can exploit their constant-volume tissues to transfer forces and displacements in predictable ways, much as articulated animals use hinges and levers. Although larval insects contain pressurized fluids, they also have internal air tubes that are compressible and, as a(More)
The success of insects arises partly from extraordinary biochemical and physiological specializations. For example, most species lack glutathione peroxidase, glutathione reductase and respiratory-gas transport proteins and thus allow oxygen to diffuse directly into cells. To counter the increased potential for oxidative damage, insect tissues rely on the(More)
Caterpillars are ecologically successful soft-bodied climbers. They are able to grip tightly to foliage using cuticular hooks at the tips of specialized abdominal limbs called prolegs. The neural control of proleg retraction has been examined in some detail but little is known about how prolegs extend and adduct. This is of particular interest because there(More)