Learn More
The recognition of specific DNA sequences by proteins is thought to depend on two types of mechanism: one that involves the formation of hydrogen bonds with specific bases, primarily in the major groove, and one involving sequence-dependent deformations of the DNA helix. By comprehensively analysing the three-dimensional structures of protein-DNA complexes,(More)
The recognition of specific DNA-binding sites by transcription factors is a critical yet poorly understood step in the control of gene expression. Members of the Hox family of transcription factors bind DNA by making nearly identical major groove contacts via the recognition helices of their homeodomains. In vivo specificity, however, often depends on(More)
Many algorithms that compare protein structures can reveal similarities that suggest related biological functions, even at great evolutionary distances. Proteins with related function often exhibit differences in binding specificity, but few algorithms identify structural variations that effect specificity. To address this problem, we describe the(More)
The application of all-atom force fields (and explicit or implicit solvent models) to protein homology-modeling tasks such as side-chain and loop prediction remains challenging both because of the expense of the individual energy calculations and because of the difficulty of sampling the rugged all-atom energy surface. Here we address this challenge for the(More)
This article describes a number of algorithms that are designed to improve both the efficiency and accuracy of finite difference solutions to the Poisson-Boltzmann equation (the FDPB method) and to extend its range of application. The algorithms are incorporated in the DelPhi program. The first algorithm involves an efficient and accurate semianalytical(More)
The genome-wide identification of pairs of interacting proteins is an important step in the elucidation of cell regulatory mechanisms. Much of our present knowledge derives from high-throughput techniques such as the yeast two-hybrid assay and affinity purification, as well as from manual curation of experiments on individual systems. A variety of(More)
In this study, we investigate the extent to which techniques for homology modeling that were developed for water-soluble proteins are appropriate for membrane proteins as well. To this end we present an assessment of current strategies for homology modeling of membrane proteins and introduce a benchmark data set of homologous membrane protein structures,(More)
We describe PredUs, an interactive web server for the prediction of protein-protein interfaces. Potential interfacial residues for a query protein are identified by 'mapping' contacts from known interfaces of the query protein's structural neighbors to surface residues of the query. We calculate a score for each residue to be interfacial with a support(More)
  • Christopher O Ortiz, John F Etchberger, Shoshana L Posy, Christian Frøkjaer-Jensen, Shawn Lockery, Barry Honig +1 other
  • 2006
Functional left/right asymmetry ("laterality") is a fundamental feature of many nervous systems, but only very few molecular correlates to functional laterality are known. At least two classes of chemosensory neurons in the nematode Caenorhabditis elegans are functionally lateralized. The gustatory neurons ASE left (ASEL) and ASE right (ASER) are two(More)
Specific interactions between proteins and DNA are fundamental to many biological processes. In this review, we provide a revised view of protein-DNA interactions that emphasizes the importance of the three-dimensional structures of both macromolecules. We divide protein-DNA interactions into two categories: those when the protein recognizes the unique(More)