Barry H. Dayton

Learn More
This paper presents algorithms for computing the multiplicity structure of a zero to a polynomial system. The zero can be exact or approximate with the system being intrinsic or empirical. As an application, the dual space theory and methodology are utilized to analyze deflation methods in solving polynomial systems, to establish tighter deflation bound,(More)
This paper presents an algorithm and its implementation for computing the approximate GCD (greatest common divisor) of multivariate polynomials whose coefficients may be inexact. The method and the companion software appears to be the first practical package with such capabilities. The most significant features of the algorithm are its robustness and(More)
Generic realizations of configurations of lines as reducible projective varieties in P n are constructed numerically. Examples are taken from projections of abstract seminormal configurations and the classical geometry related to Schläfli's double-six configuration. The ideal defining the homogeneous coordinate ring of a realization is calculated along with(More)
  • 1