Baron Peters

Learn More
Advances in theory and algorithms for electronic structure calculations must be incorporated into program packages to enable them to become routinely used by the broader chemical community. This work reviews advances made over the past five years or so that constitute the major improvements contained in a new release of the Q-Chem quantum chemistry package,(More)
Asparagine deamidation is a decisive event in chemotherapy-induced apoptosis and a major obstacle in the formulation of monoclonal antibodies. Despite the importance of deamidation, little is known about the elementary reactions involved. B3LYP/6-31+G(d,p)/COSMO-RS calculations were used to obtain stable structures and transition states for a network of(More)
Cellulose is a crystalline polymer of β1,4-D-glucose that is difficult to deconstruct to sugars by enzymes. The recalcitrance of cellulose microfibrils is a function of both the shape of cellulose microfibrils and the intrinsic work required to decrystallize individual chains, the latter of which is calculated here from the surfaces of four crystalline(More)
Interpolation methods such as the nudged elastic band and string methods are widely used for calculating minimum energy pathways and transition states for chemical reactions. Both methods require an initial guess for the reaction pathway. A poorly chosen initial guess can cause slow convergence, convergence to an incorrect pathway, or even failed electronic(More)
This paper extends our previous work on obtaining reaction coordinates from aimless shooting and likelihood maximization. We introduce a simplified version of aimless shooting and a half-trajectory likelihood score based on the committor probability. Additionally, we analyze and compare the absolute log-likelihood score for perfect and approximate reaction(More)
The reaction mechanism for nitrous oxide decomposition has been studied on hydrated and dehydrated mononuclear iron sites in Fe-ZSM-5 using density functional theory. In total, 46 different surface species with different spin states (spin multiplicity M(S) = 4 or 6) and 63 elementary reactions were considered. Heats of adsorption, activation barriers,(More)
We present a new approach for calculating reaction coordinates in complex systems. The new method is based on transition path sampling and likelihood maximization. It requires fewer trajectories than a single iteration of existing procedures, and it applies to both low and high friction dynamics. The new method screens a set of candidate collective(More)
Methane hydrates are ice-like inclusion compounds with importance to the oil and natural gas industry, global climate change, and gas transportation and storage. The molecular mechanism by which these compounds form under conditions relevant to industry and nature remains mysterious. To understand the mechanism of methane hydrate nucleation from(More)
A variety of chemical systems exhibit multiple reaction pathways that adjoin to a common reactant state. In fact, any reaction producing side products or proceeding via a stable intermediate involves a species possessing at least two reaction pathways. Despite improvements in ab initio transition-state search algorithms it remains difficult to detect(More)
The Pictet-Spengler reaction, which yields either a beta-carboline or a tetrahydroquinoline product from an aromatic amine and an aldehyde, is widely utilized in plant alkaloid biosynthesis. Here we deconvolute the role that the biosynthetic enzyme strictosidine synthase plays in catalyzing the stereoselective synthesis of a beta-carboline product. Notably,(More)