Barbara Szomolay

Linda Wooldridge3
Garry Dolton2
3Linda Wooldridge
2Garry Dolton
1Andrea J. Schauenberg
Learn More
Bacterial biofilms demonstrate adaptive resistance in response to antimicrobial stress more effectively than corresponding planktonic populations. We propose here that, in biofilms, reaction-diffusion limited penetration may result in only low levels of antimicrobial exposure to deeper regions of the biofilm. Sheltered cells are then able to enter an(More)
Phosphorylation-dephosphorylation cycles (PDCs) mediated by kinases and phosphatases are common in cellular signalling. Kinetic modelling of PDCs has shown that these systems can exhibit a variety of input-output (dose-response) behaviors including graded response, ultrasensitivity and bistability. In addition to proteins, there are a class of lipids known(More)
The interaction between T-cell receptors (TCRs) and peptide epitopes is highly degenerate: a TCR is capable of interacting productively with a wide range of different peptide ligands, involving not only cross-reactivity proper (similar epitopes elicit strong responses), but also polyspecificity (ligands with distinct physicochemical properties are capable(More)
The cross-reactivity of T cells with pathogen- and self-derived peptides has been implicated as a pathway involved in the development of autoimmunity. However, the mechanisms that allow the clonal T cell antigen receptor (TCR) to functionally engage multiple peptide-major histocompatibility complexes (pMHC) are unclear. Here, we studied multiligand(More)
Evidence indicates that autoimmunity can be triggered by virus-specific CD8(+) T cells that crossreact with self-derived peptide epitopes presented on the cell surface by major histocompatibility complex class I (MHCI) molecules. Identification of the associated viral pathogens is challenging because individual T-cell receptors can potentially recognize up(More)
  • 1