Barbara Szomolay

Learn More
Increasing susceptibility of the elderly to many infectious diseases is highly associated with the loss or delay in the generation of antigen-specific CD4(+) T cells. For Mycobacterium tuberculosis infection, where antigen-specific CD4(+) T cell derived IFN-gamma is essential, such a loss can lead to a significant failure to control infection. The present(More)
Bacterial biofilms demonstrate adaptive resistance in response to antimicrobial stress more effectively than corresponding planktonic populations. We propose here that, in biofilms, reaction-diffusion limited penetration may result in only low levels of antimicrobial exposure to deeper regions of the biofilm. Sheltered cells are then able to enter an(More)
Much of the earth's microbial biomass resides in sessile, spatially structured communities such as biofilms and microbial mats, systems consisting of large numbers of single-celled organisms living within self-secreted matrices made of polymers and other molecules. As a result of their spatial structure, these communities differ in important ways from(More)
The cross-reactivity of T cells with pathogen- and self-derived peptides has been implicated as a pathway involved in the development of autoimmunity. However, the mechanisms that allow the clonal T cell antigen receptor (TCR) to functionally engage multiple peptide-major histocompatibility complexes (pMHC) are unclear. Here, we studied multiligand(More)
It is well known that disinfection methods that successfully kill suspended bacterial populations often fail to eliminate bacterial biofilms. Recent efforts to understand biofilm survival have focused on the existence of small, but very tolerant, subsets of the bacterial population termed persisters. In this investigation, we analyze a mathematical model of(More)
Biofilms are sessile populations of microbes that live within a self-secreted matrix of extracellular polymers. They exhibit high tolerance to antimicrobial agents, and experimental evidence indicates that in many instances repeated doses of antimicrobials further reduce disinfection efficiency due to an adaptive stress response. In this investigation, a(More)
which means that the parameter ν is fixed once γkin and δ have each been assigned a value. The objective of the paper was to exhibit the range of qualitative behaviors that is possible when pMHCI/CD8 kinetics interacts with TCR/pMHCI kinetics and to show how varying levels of the co-receptor at the T-cell surface may be able to modulate the functional(More)
M-CSF is overexpressed in breast cancer and is known to stimulate macrophages to produce VEGF resulting in angiogenesis. It has recently been shown that the growth factor GM-CSF injected into murine breast tumors slowed tumor growth by secreting soluble VEGF receptor-1 (sVEGFR-1) that binds and inactivates VEGF. This study presents a mathematical model that(More)
Phosphorylation-dephosphorylation cycles (PDCs) mediated by kinases and phosphatases are common in cellular signalling. Kinetic modelling of PDCs has shown that these systems can exhibit a variety of input-output (dose-response) behaviors including graded response, ultrasensitivity and bistability. In addition to proteins, there are a class of lipids known(More)
Bacterial biofilms are notoriously difficult to eradicate owing to a number of tolerance mechanisms including physiological, physical, genotypic and phenotypic variations. Recent focus has shifted to phenotypic tolerance which is apparently the main defence mechanism that protects biofilms against long-term disinfection. Previous mathematical models have(More)