Barbara Ogórek

Learn More
RATIONALE The turnover of cardiomyocytes in the aging female and male heart is currently unknown, emphasizing the need to define human myocardial biology. OBJECTIVE The effects of age and gender on the magnitude of myocyte regeneration and the origin of newly formed cardiomyocytes were determined. METHODS AND RESULTS The interaction of myocyte(More)
BACKGROUND Although progenitor cells have been described in distinct anatomical regions of the lung, description of resident stem cells has remained elusive. METHODS Surgical lung-tissue specimens were studied in situ to identify and characterize human lung stem cells. We defined their phenotype and functional properties in vitro and in vivo. RESULTS(More)
RATIONALE The ability of the human heart to regenerate large quantities of myocytes remains controversial, and the extent of myocyte renewal claimed by different laboratories varies from none to nearly 20% per year. OBJECTIVE To address this issue, we examined the percentage of myocytes, endothelial cells, and fibroblasts labeled by iododeoxyuridine in(More)
BACKGROUND Cardiac stem cells (CSCs) delivered to the infarcted heart generate a large number of small fetal-neonatal cardiomyocytes that fail to acquire the differentiated phenotype. However, the interaction of CSCs with postmitotic myocytes results in the formation of cells with adult characteristics. METHODS AND RESULTS On the basis of results of in(More)
BACKGROUND Two opposite views of cardiac growth are currently held; one views the heart as a static organ characterized by a large number of cardiomyocytes that are present at birth and live as long as the organism, and the other views the heart a highly plastic organ in which the myocyte compartment is restored several times during the course of life. (More)
RATIONALE The ability of the adult heart to generate new myocytes after injury is not established. OBJECTIVE Our purpose was to determine whether the adult heart has the capacity to generate new myocytes after injury, and to gain insight into their source. METHODS AND RESULTS Cardiac injury was induced in the adult feline heart by infusing isoproterenol(More)
RATIONALE Embryonic and fetal myocardial growth is characterized by a dramatic increase in myocyte number, but whether the expansion of the myocyte compartment is dictated by activation and commitment of resident cardiac stem cells (CSCs), division of immature myocytes or both is currently unknown. OBJECTIVE In this study, we tested whether prenatal(More)
An analysis of the clonality of cardiac progenitor cells (CPCs) and myocyte turnover in vivo requires genetic tagging of the undifferentiated cells so that the clonal marker of individual mother cells is traced in the specialized progeny. CPC niches in the atria and apex of the mouse heart were infected with a lentivirus carrying EGFP, and the destiny of(More)
BACKGROUND Little is known about the function of inositol 1,4,5-trisphosphate receptors (IP3Rs) in the adult heart experimentally. Moreover, whether these Ca(2+) release channels are present and play a critical role in human cardiomyocytes remains to be defined. IP3Rs may be activated after Gαq-protein-coupled receptor stimulation, affecting Ca(2+) cycling,(More)
RATIONALE Physiological hypertrophy in the developing heart has been considered the product of an increase in volume of preexisting fetal cardiomyocytes in the absence of myocyte formation. OBJECTIVE In this study, we tested whether the mouse heart at birth has a pool of cardiac stem cells (CSCs) that differentiate into myocytes contributing to the(More)