Barbara Majello

Learn More
Sp1 is one of the very first cellular transcription factors to be identified and cloned in virtue of its binding to a G-rich motif in the SV40 early promoter. Sp1 protein binds to the G-rich sequences present in a variety of cellular and viral promoters and stimulates their transcriptional activity. Recently, a number of other GC and/or GT box-binding(More)
Sp3 is a member of the Sp family of transcription factors and binds to DNA with affinity and specificity comparable to that of Sp1. We demonstrate that Sp3 is a bifunctional transcription factor that can both activate and repress transcription. Gene fusion experiments in mammalian cells demonstrate that the Sp3 activation potential is distributed over an(More)
Recently, a family of transcription factors structurally related to Sp1 has been described; thus, more than one activator may bind to the GC boxes present in a number of viral and cellular promoters. We have compared the transactivation potentials of Sp1, Sp3 and Sp4 proteins on the human immunodeficiency virus type 1 (HIV-1) promoter. The long terminal(More)
We have identified a novel human gene encoding a 59-kDa POZ-AT hook-zinc finger protein (PATZ) that interacts with RNF4, a mediator of androgen receptor activity, and acts as a transcriptional repressor. PATZ cDNA was isolated through a two-hybrid interaction screening using the RING finger protein RNF4 as a bait. In vitro and in vivo interaction between(More)
An increasing body of evidence suggests that eukaryotic activators stimulate polymerase II transcription by facilitating the assembly of the functional basal machinery at the promoter. Here we describe experiments that provide added support for the idea that recruitment of TATA-binding protein (TBP) is a rate-limiting step for transcription activation in(More)
Transcription of the human C-reactive protein (CRP) gene is induced by interleukin-6 (IL-6) during acute inflammation. Important information for inducible CRP expression is located within the 90 bases preceding the transcriptional start site. We show that the CRP promoter contains two adjacent binding sites (beta and alpha) that interact with at least two(More)
ERV9 is a low repeated family of human endogenous retroviral elements whose expression is mainly detectable in undifferentiated embryonal carcinoma NT2/D1 cells. In this report we have analyzed the minimal promoter region located within the ERV9 LTR. Using the transient CAT expression assay we have identified the minimal promoter region, which includes(More)
We have isolated cDNA clones of the human c-myb mRNA that contain approximately 3.4 kilobases of the approximately 3.8-kilobase mRNA sequence. Nucleotide sequence analysis shows that the c-myb mRNA contains an open reading frame of 1920 nucleotides, which could encode a 72-kDa protein. The cDNA nucleotide sequence and the predicted amino acid sequence of(More)
DNA and histone chromatin modifying enzymes play a crucial role in chromatin remodeling in several biological processes. Lysine-specific demethylase 1 (LSD1), the first identified histone demethylase, is a relevant player in the regulation of a broad spectrum of biological processes including development, cellular differentiation, embryonic pluripotency and(More)
Myc is a transcription factor that significantly contributes to cancer progression by modulating the expression of important genes through binding to a DNA sequence, CACGTG, called E-box. We find that on Myc binding to chromatin, the lysine-demethylating enzyme, LSD1, triggers a transient demethylation of lysine 4 in the histone H3. In addition, we(More)