Learn More
In Arabidopsis (Arabidopsis thaliana), trehalose is present at almost undetectable levels, excluding its role as an osmoprotectant. Here, we report that overexpression of AtTPS1 in Arabidopsis using the 35S promoter led to a small increase in trehalose and trehalose-6-P levels. In spite of this, transgenic plants displayed a dehydration tolerance phenotype(More)
Trehalose accumulation has been documented in many organisms, such as bacteria and fungi, where it serves a storage and stress-protection role. Although conspicuously absent in most plants, trehalose biosynthesis genes were discovered recently in higher plants. We have uncovered a family of 11 TPS genes in Arabidopsis thaliana, one of which encodes a(More)
Syntaxins and other SNARE proteins are crucial for intracellular vesicle trafficking, fusion, and secretion. Previously, we isolated the syntaxin-related protein NtSyr1 (NtSyp121) from tobacco in a screen for abscisic acid-related signaling elements, demonstrating its role in determining the abscisic acid sensitivity of K(+) and Cl(-) channels in stomatal(More)
Plants sense and respond to changes in carbon and nitrogen metabolites during development and growth according to the internal needs of their metabolism. Sugar-sensing allows plants to switch off photosynthesis when carbohydrates are abundant. These processes involve regulation of gene and protein activity to allow plants the efficient use of energy(More)
Trehalose metabolism has profound effects on plant growth and metabolism, but the mechanisms involved are unclear. In Arabidopsis, 21 putative trehalose biosynthesis genes are classified in three subfamilies based on their similarity with yeast TPS1 (encoding a trehalose-6-phosphate synthase, TPS) or TPS2 (encoding a trehalose-6-phosphate phosphatase, TPP).(More)
The disaccharide trehalose has dramatic effects on plant metabolism, growth and development. Arabidopsis seedlings grown on trehalose-containing medium without sucrose display increased expression of the starch synthesis gene ApL3, hyper-accumulation of starch in the cotyledons and inhibition of root growth. Here we show that the ABI4 transcription factor(More)
Most organisms naturally accumulating trehalose upon stress produce the sugar in a two-step process by the action of the enzymes trehalose-6-phosphate synthase (TPS) and trehalose-6-phosphate phosphatase (TPP). Transgenic plants overexpressing TPS have shown enhanced drought tolerance in spite of minute accumulation of trehalose, amounts believed to be too(More)
Trehalose (a non-reducing disaccharide) plays an important role in abiotic stress protection. It has been shown that using trehalose synthesis genes of bacterial origin, drought and salt tolerance could be achieved in several plants. A cassette harboring the AtTPS1 gene under the control of the CaMV35S promoter and the Bialaphos resistance gene was inserted(More)
A number of systems to insert foreign DNA into a plant genome have been developed so far. However, only a small percentage of transgenic plants are obtained using any of these methods. Stable transgenic plants are selected by co-introduction of a selectable marker gene, which in most cases are genes that confer resistance against antibiotics or herbicides.(More)
Following the establishment of a transgenic line of tobacco (B5H) expressing the trehalose-6-phosphate synthase (TPS) gene from Arabidopsis thaliana, a preliminary immunolocalization study was conducted using leaves of adequately watered B5H and wild-type plants. Immunocytochemical staining, followed by electron microscopy showed that the enzyme could be(More)