Barbara J. Gour

Learn More
The classical cadherins (e.g. N-, E-, and P- cadherin) are well established homophilic adhesion molecules; however, the mechanism that governs cadherin specificity remains contentious. The classical cadherins contain an evolutionarily conserved His-Ala-Val (HAV) sequence, and linear peptides harboring this motif are capable of inhibiting a variety of(More)
Astrocytes exclude Schwann cells (SCs) from the central nervous system (CNS) at peripheral nerve entry zones and restrict their migration after transplantation into the CNS. We have modeled the interactions between SCs, astrocytes, and fibroblasts in vitro. Astrocytes and SCs in vitro form separate territories, with sharp boundaries between them. SCs(More)
The classical cadherins are homophilic binding molecules that play fundamental roles in several biological processes, including axonal growth and synaptic plasticity. The structures of the amino-terminal homophilic binding domains of N-cadherin and E-cadherin have been resolved. However, the mechanisms that govern cadherin binding and specificity remain(More)
Studies suggest that cell-cell interactions may regulate apoptosis, and in particular, the calcium-dependent cell adhesion molecule N-cadherin has been shown to be capable of modulating this process. Rat granulosa cells (GCs) are known to express N-cadherin whereas cAMP is known to induce apoptosis in human and rat GCs. Based on these observations, we(More)
Oligodendrocyte cell migration is required for the development of the nervous system and the repopulation of demyelinated lesions in the adult central nervous system. We have investigated the role of the calcium-dependent adhesion molecules, the cadherins, in oligodendrocyte-astrocyte interaction and oligodendrocyte progenitor migration. Immunostaining(More)
Cadherins are a family of transmembrane glycoproteins mediating calcium-dependent, homophilic cell-cell adhesion. In addition, these molecules are involved in signaling events, regulating such processes as cell motility, proliferation, and apoptosis. Members of the cadherin subfamily, called either classical or type I cadherins, contain a highly conserved(More)
The molecular mechanisms by which the tight junction integral membrane protein, occludin promotes cell adhesion and establishes an endothelial monolayer permeability barrier have not been elucidated. In particular, the amino acid sequences of the occludin cell adhesion recognition (CAR) sites have not been determined. Here we demonstrate that a cyclic(More)
Occludin is an integral membrane protein within tight junctions. Previous studies suggest it functions as a sealing element, which promotes barrier in endothelial and epithelial cell layers. Here, we examine the role of occludin in neutrophil chemotaxis, using cyclic occludin peptide antagonists that incorporate a conserved occludin cell adhesion(More)
  • 1