Barbara J Cade-Menun

Learn More
Phosphorus nuclear magnetic resonance ((31)P-NMR) spectroscopy has advanced our knowledge of organic phosphorus (P) in soils and environmental samples more than any other technique. This paper reviews the use of (31)P-NMR spectroscopy for soil, water and other environmental samples. The requirements for a successful solid-state or solution (31)P-NMR(More)
Organic phosphorus is an important component of soil biogeochemical cycles, but must be extracted from soil prior to analysis. Here we critically review the extraction of soil organic phosphorus, including procedures for quantification, speciation, and assessment of biological availability. Quantitative extraction conventionally requires strong acids and(More)
the need to understand the nature of organic P in these soils. The organic P composition of semi-arid arable soils is largely unSoil organic P determination has traditionally been known, but such information is fundamental to understanding P dynamics in irrigated agriculture. We used solution 31P nuclear magnetic hampered by difficulties with the(More)
Phosphorus-31 nuclear magnetic resonance (NMR) spectroscopy is an excellent tool with which to study soil organic P, allowing quantitative, comparative analysis of P forms. However, for 31P NMR to be tative, all peaks must be completely visible, and in their correct relative proportions. There must be no line broadening, and adequate delay times must be(More)
Effective manure management to efficiently utilize organic wastes without causing environmental degradation requires a clear understanding of the transformation of P forms from diet to manure. Thus, the objective of this study was to establish quantitative relationships between P forms in diets, feces, and manures collected from U.S. Northeastern and(More)
Management of aquatic ecosystems is hampered because current methodology limits characterization of phosphorus (P)forms. We developed a procedure to characterize dissolved (DP) and particulate (PP) P from river waters by solution 31P nuclear magnetic resonance (NMR) spectroscopy, using 4-L samples, and tested this procedure with a spiking trial. Most P was(More)
Ultisols in China need phosphorus (P) fertilization to sustain crop production but are prone to P loss in runoff. Balancing P inputs and loss requires detailed information about soil P forms because P speciation influences P cycling. Analytical methods vary in the information they provide on P speciation; thus, we used sequential fractionation (SF),(More)
Phosphorous (P)-31 nuclear magnetic resonance (NMR) spectroscopy is used in the analysis of P forms in extracts of soils and manures for environmental and agronomic purposes. Quantitative spectra require knowledge about spin-lattice relaxation times (T1) to ensure adequate delays between pulses. This paper determined T1 values of P forms in reconstituted(More)
Two common manure storage practices are stockpiles and lagoons. The manure from stockpiles is applied to soils in solid form, while lagoon manure is applied as a liquid. Soil amendment with manure in any form introduces a significant amount of phosphorus (P) that exists in both organic and inorganic forms. However, little is known about P speciation in(More)
Phosphorus (P) regeneration and transformation in the oceanic water column and in marine sediments depends on the chemical nature of the sinking particulate P pool. For the first time, we have characterized the molecular composition of this pool, in various oceanic settings and water depths, using P nuclear magnetic resonance (NMR) spectroscopy. Both(More)