Learn More
This review of ECM molecules shows quite clearly the function of the ECM in development but more importantly in the mature CNS after injury. Most of the proteoglycans, especially the large CS-PGs, are able to inhibit neurite outgrowth and in vivo experiments are now in progress to specifically inhibit these important molecules. The nature of growth promoter(More)
We have addressed the question of whether a family of axon growth-promoting molecules known as the laminins may play a role during axon regeneration in the CNS. A narrow sickle-shaped region containing a basal lamina-independent form of laminin exists in and around the cell bodies and proximal portion of the apical dendrites of CA3 pyramidal neurons of the(More)
CNS lesions induce production of ECM molecules that inhibit axon regeneration. One major inhibitory family is the chondroitin sulfate proteoglycans (CSPGs). Reduction of their glycosaminoglycan (GAG) chains with chondroitinase ABC leads to increased axon regeneration that does not extend well past the lesion. Chondroitinase ABC, however, is unable to(More)
In the dorsal root entry zone (DREZ) peripheral sensory axons fail to regenerate past the peripheral nervous system/central nervous system (PNS/CNS) interface. Additionally, in the spinal cord, central fibers that regenerate into Schwann cell (SC) bridges can enter but do not exit at the distal Schwann cell/astrocyte (AC) boundary. At both interfaces where(More)
  • 1