Barbara Chapman

Learn More
Patterns of synaptic connections in the visual system are remarkably precise. These connections dictate the receptive field properties of individual visual neurons and ultimately determine the quality of visual perception. Spontaneous neural activity is necessary for the development of various receptive field properties and visual feature maps. In recent(More)
The orientation selectivity of cells in ferret primary visual cortex was studied during normal development and in animals deprived of vision or of visual cortical activity. In normal animals from the age when visual responses were first recorded (postnatal day 23) through postnatal week 5, only about 25% of cells showed orientation-selective responses. By(More)
The development of orientation preference maps was studied in ferret primary visual cortex using chronic optical imaging of intrinsic signals. The emergence and maturation of the maps were examined over time in single animals. The earliest age at which cortical domains selectively responsive to particular stimulus orientations were observed varied(More)
Neurons in the primary visual cortex of higher mammals are arranged in columns, and the neurons in each column respond best to light-dark borders of particular orientations. The basis of cortical cell orientation selectivity is not known. One possible mechanism would be for cortical cells to receive input from several lateral geniculate nucleus (LGN)(More)
Microelectrode recordings and optical imaging of intrinsic signals were used to define the critical period for susceptibility to monocular deprivation (MD) in the primary visual cortex of the ferret. Ferrets were monocularly deprived for 2, 7 or >14 d, beginning between postnatal day 19 (P19) and P110. The responses of visual cortical neurons to stimulation(More)
Neuronal pentraxins (NPs) define a family of proteins that are homologous to C-reactive and acute-phase proteins in the immune system and have been hypothesized to be involved in activity-dependent synaptic plasticity. To investigate the role of NPs in vivo, we generated mice that lack one, two, or all three NPs. NP1/2 knock-out mice exhibited defects in(More)
The segregation of initially intermingled left and right eye inputs to the dorsal lateral geniculate nucleus (DLGN) during development is thought to be in response to precise spatial and temporal patterns of spontaneous ganglion cell activity. To test this hypothesis, we disrupted the correlated activity of neighboring ganglion cells in the developing(More)
We have investigated the role of the N-methyl-D-aspartate (NMDA) receptor, a subtype of glutamate receptor, in the responses of cells in adult cat visual cortex. After intracortical infusion of the NMDA receptor antagonist DL-2-amino-5-phosphonovalerate (DL-APV) for one day, iontophoretic responses to NMDA, to kainate, and to quisqualate revealed a receptor(More)
In the adult mammal, retinal ganglion cell axon arbors are restricted to eye-specific layers in the lateral geniculate nucleus. Blocking neuronal activity early in development prevents this segregation from occurring. To test whether activity is also required to maintain eye-specific segregation, ganglion cell activity was blocked after segregation was(More)
One of the fundamental principles of visual cortical organization is that neurons form a "map" in which neighboring cells have similar orientation preferences. Previous anatomical and imaging studies have shown that although the exact layouts of these orientation preference maps vary between individuals, features of iso-orientation domains such as width and(More)