Learn More
The sensitivity to denaturant stress of the major (AGT-Ma) and the minor (AGT-Mi) allele of alanine:glyoxylate aminotransferase and P11L mutant has been examined by studying their urea-induced equilibrium unfolding processes with various spectroscopic and analytical techniques. AGT-Ma loses pyridoxal 5'-phosphate (PLP) and unfolds completely without(More)
G41 is an interfacial residue located within the alpha-helix 34-42 of alanine:glyoxylate aminotransferase (AGT). Its mutations on the major (AGT-Ma) or the minor (AGT-Mi) allele give rise to the variants G41R-Ma, G41R-Mi, and G41V-Ma causing hyperoxaluria type 1. Impairment of dimerization in these variants has been suggested to be responsible for(More)
The role of insulin-like growth factor 1 (IGF1) pathway as regulator of aging and age-related diseases is increasingly recognized. Recent evidence has been provided that neuronal IGF1-R increases during aging leading to activation of a signaling pathway that causes an increased production of amyloid beta-peptide, the principal event in the pathogenesis of(More)
STAT3 is a latent transcription factor that promotes cell survival and proliferation and is often constitutively active in cancers. Although many reports provide evidence that STAT3 is a direct target of oxidative stress, its redox regulation is poorly understood. Under oxidative conditions STAT3 activity can be modulated by S-glutathionylation, a(More)
The vitamin B(6)-derived pyridoxal 5'-phosphate (PLP) is the cofactor of enzymes catalyzing a large variety of chemical reactions mainly involved in amino acid metabolism. These enzymes have been divided in five families and fold types on the basis of evolutionary relationships and protein structural organization. Almost 1.5% of all genes in prokaryotes(More)
Vitamin B6 in the form of pyridoxine (PN) is one of the most widespread pharmacological therapies for inherited diseases involving pyridoxal phosphate (PLP)-dependent enzymes, including primary hyperoxaluria type I (PH1). PH1 is caused by a deficiency of liver-peroxisomal alanine: glyoxylate aminotransferase (AGT), which allows glyoxylate oxidation to(More)
Dopa decarboxylase (DDC), a pyridoxal 5'-phosphate (PLP) enzyme responsible for the biosynthesis of dopamine and serotonin, is involved in Parkinson's disease (PD). PD is a neurodegenerative disease mainly due to a progressive loss of dopamine-producing cells in the midbrain. Co-administration of L-Dopa with peripheral DDC inhibitors (carbidopa or(More)
Primary Hyperoxaluria Type I (PH1) is a severe rare disorder of metabolism due to inherited mutations on liver peroxisomal alanine:glyoxylate aminotransferase (AGT), a pyridoxal 5'-phosphate (PLP)-dependent enzyme whose deficiency causes the deposition of calcium oxalate crystals in the kidneys and urinary tract. PH1 is an extremely heterogeneous disease(More)
Primary Hyperoxaluria type I (PH1) is a rare disease due to the deficit of peroxisomal alanine:glyoxylate aminotransferase (AGT), a homodimeric pyridoxal-5'-phosphate (PLP) enzyme present in humans as major (Ma) and minor (Mi) allele. PH1-causing mutations are mostly missense identified in both homozygous and compound heterozygous patients. Until now, the(More)
MalY from Escherichia coli is a bifunctional dimeric PLP (pyridoxal 5'-phosphate) enzyme acting as a beta-cystathionase and as a repressor of the maltose system. The spectroscopic and molecular properties of the holoenzyme, in the untreated and NaBH4-treated forms, and of the apoenzyme have been elucidated. A systematic study of the urea-induced unfolding(More)