Learn More
Exposure of rabbit red blood cells to dehydroascorbic acid (DHA) caused a significant decline in glutathione content which was largely prevented by quercetin, whereas it was insensitive to various antioxidants, iron chelators or scavengers of reactive oxygen species. This response was not mediated by chemical reduction of either extracellular DHA or(More)
G41 is an interfacial residue located within the alpha-helix 34-42 of alanine:glyoxylate aminotransferase (AGT). Its mutations on the major (AGT-Ma) or the minor (AGT-Mi) allele give rise to the variants G41R-Ma, G41R-Mi, and G41V-Ma causing hyperoxaluria type 1. Impairment of dimerization in these variants has been suggested to be responsible for(More)
Human hepatic peroxisomal AGT (alanine:glyoxylate aminotransferase) is a PLP (pyridoxal 5'-phosphate)-dependent enzyme whose deficiency causes primary hyperoxaluria Type I, a rare autosomal recessive disorder. To acquire experimental evidence for the physiological function of AGT, the K(eq),(overall) of the reaction, the steady-state kinetic parameters of(More)
The sensitivity to denaturant stress of the major (AGT-Ma) and the minor (AGT-Mi) allele of alanine:glyoxylate aminotransferase and P11L mutant has been examined by studying their urea-induced equilibrium unfolding processes with various spectroscopic and analytical techniques. AGT-Ma loses pyridoxal 5'-phosphate (PLP) and unfolds completely without(More)
The role of insulin-like growth factor 1 (IGF1) pathway as regulator of aging and age-related diseases is increasingly recognized. Recent evidence has been provided that neuronal IGF1-R increases during aging leading to activation of a signaling pathway that causes an increased production of amyloid β-peptide, the principal event in the pathogenesis of(More)
The vitamin B(6)-derived pyridoxal 5'-phosphate (PLP) is the cofactor of enzymes catalyzing a large variety of chemical reactions mainly involved in amino acid metabolism. These enzymes have been divided in five families and fold types on the basis of evolutionary relationships and protein structural organization. Almost 1.5% of all genes in prokaryotes(More)
The biologically active form of the B6 vitamers is pyridoxal 5'-phosphate (PLP), which plays a coenzymatic role in several distinct enzymatic activities ranging from the synthesis, interconversion and degradation of amino acids to the replenishment of one-carbon units, synthesis and degradation of biogenic amines, synthesis of tetrapyrrolic compounds and(More)
STAT3 is a latent transcription factor that promotes cell survival and proliferation and is often constitutively active in cancers. Although many reports provide evidence that STAT3 is a direct target of oxidative stress, its redox regulation is poorly understood. Under oxidative conditions STAT3 activity can be modulated by S-glutathionylation, a(More)
Human liver peroxisomal alanine:glyoxylate aminotransferase (AGT) is a pyridoxal 5'-phosphate (PLP)-dependent enzyme that converts glyoxylate into glycine. AGT deficiency causes primary hyperoxaluria type 1 (PH1), a rare autosomal recessive disorder, due to a marked increase in hepatic oxalate production. Normal human AGT exists as two polymorphic variants:(More)
The hepatic peroxisomal alanine:glyoxylate aminotransferase (AGT) is a pyridoxal 5'-phosphate (PLP)-enzyme whose deficiency is responsible for Primary Hyperoxaluria Type 1 (PH1), an autosomal recessive disorder. In the last few years the knowledge of the characteristics of AGT and the transfer of this information into some pathogenic variants have(More)