Learn More
Local space-time features capture local events in video and can be adapted to the size, the frequency and the velocity of moving patterns. In this paper we demonstrate how such features can be used for recognizing complex motion patterns. We construct video representations in terms of local space-time features and integrate such representations with SVM(More)
Classifying materials from their appearance is a challenging problem, especially if illumination and pose conditions are permitted to change: highlights and shadows caused by 3D structure can radically alter a sample's visual texture. Despite these difficulties, researchers have demonstrated impressive results on the CUReT database which contains many(More)
Although a considerable amount of work has been published on material classification, relatively little of it studies situations with considerable variation within each class. Many experiments use the exact same sample, or different patches from the same image, for training and test sets. Thus, such studies are vulnerable to effectively recognising one(More)
Recent developments in computer vision have shown that local features can provide efficient representations suitable for robust object recognition. Support Vector Machines have been established as powerful learning algorithms with good generalization capabilities. In this paper, we combine these two approaches and propose a general kernel method for(More)
We present a discriminative online algorithm with a bounded memory growth, which is based on the kernel-based Perceptron. Generally, the required memory of the kernel-based Perceptron for storing the online hypothesis is not bounded. Previous work has been focused on discarding part of the instances in order to keep the memory bounded. In the proposed(More)
A common problem of kernel-based online algorithms, such as the kernel-based Perceptron algorithm , is the amount of memory required to store the online hypothesis, which may increase without bound as the algorithm progresses. Furthermore, the computational load of such algorithms grows linearly with the amount of memory used to store the hypothesis. To(More)
In this paper, we address the problem of motion recognition using event-based local motion representations. We assume that similar patterns of motion contain similar events with consistent motion across image sequences. Using this assumption, we formulate the problem of motion recognition as a matching of corresponding events in image sequences. To enable(More)
The vast majority of transfer learning methods proposed in the visual recognition domain over the last years addresses the problem of object category detection, assuming a strong control over the priors from which transfer is done. This is a strict condition, as it concretely limits the use of this type of approach in several settings: for instance, it does(More)
An important competence for a mobile robot system is the ability to localize and perform context interpretation. This is required to perform basic navigation and to facilitate local specific services. Usually localization is performed based on a purely geometric model. Through use of vision and place recognition a number of opportunities open up in terms of(More)
Category detection is a lively area of research. While categorization algorithms tend to agree in using local descriptors, they differ in the choice of the classifier, with some using generative models and others discriminative approaches. This paper presents a method for object category detection which integrates a generative model with a discriminative(More)